Chapter 8 - Culverts

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 8 - CULVERTS</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1 Overview</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.1 Introduction</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.2 Objective</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2 Design Policy</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3 Design Criteria</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3.1 Site Criteria</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3.1.1 Structure Type Selection</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3.1.2 Topography</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.1.3 Debris Control</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.1.4 Soil and Water Data</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.1.5 Protective Coating for Structures Exposed to Tidal Water or Corrosive Environment</td>
<td>8-5</td>
</tr>
<tr>
<td>8.3.1.6 Requesting Data and Materials Division Recommendations</td>
<td>8-5</td>
</tr>
<tr>
<td>8.3.1.7 Subsurface Investigation</td>
<td>8-6</td>
</tr>
<tr>
<td>8.3.1.8 Pipe Camber</td>
<td>8-6</td>
</tr>
<tr>
<td>8.3.2 Hydraulic Criteria</td>
<td>8-7</td>
</tr>
<tr>
<td>8.3.2.1 Design Storm</td>
<td>8-7</td>
</tr>
<tr>
<td>8.3.2.2 Allowable Headwater</td>
<td>8-7</td>
</tr>
<tr>
<td>8.3.2.3 Review Headwater</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3.2.4 Tailwater Relationship – Channel</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3.2.5 Tailwater Relationship – Confluence or Large Water Body</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3.2.6 Maximum Outlet Velocity</td>
<td>8-9</td>
</tr>
<tr>
<td>8.3.2.7 Minimum Velocity</td>
<td>8-12</td>
</tr>
<tr>
<td>8.3.2.8 Storage Routing - Temporary or Permanent</td>
<td>8-12</td>
</tr>
<tr>
<td>8.3.2.9 Roadway Overtopping</td>
<td>8-12</td>
</tr>
<tr>
<td>8.3.3 Geometric Criteria</td>
<td>8-13</td>
</tr>
<tr>
<td>8.3.3.1 Culvert Size and Shape</td>
<td>8-13</td>
</tr>
<tr>
<td>8.3.3.2 Multiple Barrels</td>
<td>8-13</td>
</tr>
<tr>
<td>8.3.3.3 Culvert Skew</td>
<td>8-13</td>
</tr>
<tr>
<td>8.3.3.4 End Treatment (Inlet or Outlet)</td>
<td>8-14</td>
</tr>
<tr>
<td>8.3.3.4.1 Projecting Inlets or Outlets</td>
<td>8-15</td>
</tr>
<tr>
<td>8.3.3.4.2 Prefabricated End Sections</td>
<td>8-15</td>
</tr>
<tr>
<td>8.3.3.4.3 Headwalls with Bevels</td>
<td>8-15</td>
</tr>
<tr>
<td>8.3.3.4.4 Improved Inlets</td>
<td>8-15</td>
</tr>
<tr>
<td>8.3.3.4.5 Wingwalls</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3.3.4.6 Aprons</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3.3.4.7 Cut-off Walls</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3.3.4.8 Trash Racks or Debris Deflectors</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3.4 Safety Considerations</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3.5 Allowable Pipe Materials</td>
<td>8-17</td>
</tr>
<tr>
<td>8.3.6 Other Design Considerations</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.6.1 Buoyancy Protection</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.6.2 Relief Opening</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.6.3 Land Use Culverts</td>
<td>8-18</td>
</tr>
<tr>
<td>8.3.6.4 Erosion and Sediment Control</td>
<td>8-18</td>
</tr>
</tbody>
</table>
8.4.3.6.5 Environmental Considerations and Fishery Protection 8-19
8.3.6.6 Pipe in High Fills .. 8-19
8.3.6.7 Pipe Rehabilitation (Pipe not Replaced).. 8-20
8.3.6.8 Existing Box Culvert Extensions .. 8-23
8.3.6.9 Small Box Culverts ... 8-23
8.3.6.10 Pile Foundation Design for Box Culverts 8-23
8.3.6.11 Trenchless Applications (Culvert Replacement or New Pipe) 8-23
 8.3.6.11.1 Jack and Bore .. 8-27
 8.3.6.11.2 Microtunneling ... 8-27
 8.3.6.11.3 Pipe Jacking .. 8-27

8.3.7 Culvert Hydraulics ... 8-39
 8.4.3.7.1 Design Methods .. 8-39
 8.4.3.7.2 General .. 8-37
 8.4.3.7.3 Computational Methods .. 8-38
 8.4.3.7.4 Hydrologic Methods .. 8-37

8.3.7.1 Definitions .. 8-28
 8.3.7.1.1 Stream Bed .. 8-28
 8.3.7.1.2 Culvert .. 8-28

8.3.7.2 Purpose .. 8-28

8.3.7.3 Policy ... 8-28

8.3.7.4 Multiple Barrel Culverts ... 8-29

8.3.7.5 Special Culvert Installations .. 8-30
 8.3.7.5.1 Culverts on Bedrock ... 8-30
 8.3.7.5.2 Culverts on Steep Terrain ... 8-31
 8.3.7.5.3 Culverts at the Confluence of Two Streams 8-31
 8.3.7.5.4 Culverts on Steep Terrain ... 8-31

8.3.7.6 Special Condition - Inlet Control ... 8-43
 8.3.7.6.1 Inlet Control Nomographs ... 8-43
 8.3.7.6.2 Unsubmerged - Inlet Control ... 8-43
 8.3.7.6.3 Submerged - Inlet Control ... 8-43
 8.3.7.6.4 Transition Zone - Inlet Control ... 8-43
 8.3.7.6.5 Special Condition - Inlet Control ... 8-43

8.3.7.7 Endwalls and Other Structures ... 8-36

8.3.7.8 Criteria .. 8-32
 8.3.7.8.1 Stream Bed .. 8-28
 8.3.7.8.2 Culvert .. 8-28

8.4 Special Culvert Installations ... 8-30

8.4.3.8 Special Culvert Installations .. 8-30
 8.4.3.8.1 Culverts on Bedrock ... 8-30
 8.4.3.8.2 Culverts on Steep Terrain ... 8-31
 8.4.3.8.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.8.4 Culverts on Steep Terrain ... 8-31

8.4.3.9 Special Culvert Installations .. 8-30
 8.4.3.9.1 Culverts on Bedrock ... 8-30
 8.4.3.9.2 Culverts on Steep Terrain ... 8-31
 8.4.3.9.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.9.4 Culverts on Steep Terrain ... 8-31

8.4.3.10 Special Culvert Installations ... 8-30
 8.4.3.10.1 Culverts on Bedrock ... 8-30
 8.4.3.10.2 Culverts on Steep Terrain ... 8-31
 8.4.3.10.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.10.4 Culverts on Steep Terrain ... 8-31

8.4.3.11 Special Culvert Installations ... 8-30
 8.4.3.11.1 Culverts on Bedrock ... 8-30
 8.4.3.11.2 Culverts on Steep Terrain ... 8-31
 8.4.3.11.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.11.4 Culverts on Steep Terrain ... 8-31

8.4.3.12 Special Culvert Installations ... 8-30
 8.4.3.12.1 Culverts on Bedrock ... 8-30
 8.4.3.12.2 Culverts on Steep Terrain ... 8-31
 8.4.3.12.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.12.4 Culverts on Steep Terrain ... 8-31

8.4.3.13 Special Culvert Installations ... 8-30
 8.4.3.13.1 Culverts on Bedrock ... 8-30
 8.4.3.13.2 Culverts on Steep Terrain ... 8-31
 8.4.3.13.3 Culverts at the Confluence of Two Streams 8-31
 8.4.3.13.4 Culverts on Steep Terrain ... 8-31
List of Figures
Figure 8-1. Performance Curves - Unsubmerged, Transition, and Submerged..................8-41
Figure 8-2. Types of Inlet Control Flow...8-42
Figure 8-3. Types of Outlet Control Flow..8-44
Figure 8-4. Full Flow Energy and Hydraulic Grade Lines..8-48
Figure 8-5. Outlet Control Energy and Hydraulic Grade Lines8-49
Figure 8-6. Outlet Velocity - Inlet Control...8-51
Figure 8-7. Outlet Velocity - Outlet Control...8-52
Figure 8-8. Overall Culvert Performance Curve ..8-53
Figure 8-9. Side-Tapered Inlet ..8-55
Figure 8-10. Slope-Tapered Inlet ...8-56

List of Appendices
Appendix 8B-1 Culvert Design Form, LD-269
Appendix 8C-1 Inlet Control, Circular Concrete
Appendix 8C-2 Inlet Control, Circular Corrugated Metal
Appendix 8C-3 Inlet Control, Circular with Beveled Ring
Appendix 8C-4 Critical Depth, Circular
Appendix 8C-5 Outlet Control, Circular Concrete
Appendix 8C-6 Outlet Control, Circular Corrugated Metal
Appendix 8C-7 Outlet Control, Circular Structural Plate Corrugated Metal
Appendix 8C-8 Inlet Control, Concrete Box
Appendix 8C-9 Inlet Control, Concrete Box, Flared Wingwalls at 18° to 33.7° and 45°, Beveled Top Edge
Appendix 8C-10 Inlet Control, Concrete Box, 90° Headwall, Chamfered or Beveled Edges
Appendix 8C-11 Inlet Control, Single Barrel Concrete Box, Skewed Headwalls, Chamfered or Beveled Edges
Appendix 8C-12 Inlet Control, Concrete Box, Flared Wingwalls, Normal and Skewed Inlets, Chamfered Top Edge
Appendix 8C-13 Inlet Control, Concrete Box with Offset Flared Wingwalls, Beveled Top Edge
Appendix 8C-14 Critical Depth, Concrete Box
Appendix 8C-15 Outlet Control, Concrete Box
Appendix 8C-16 Inlet Control, Corrugated Metal Box, Rise/Span < 0.3
Appendix 8C-17 Inlet Control, Corrugated Metal Box, 0.3 <= Rise/Span < 0.4
Appendix 8C-18 Inlet Control, Corrugated Metal Box, 0.4 <= Rise/Span < 0.5
Appendix 8C-19 Inlet Control, Corrugated Metal Box, 0.5 <= Rise/Span
Appendix 8C-20 Critical Depth, Corrugated Metal Box
Appendix 8C-21 Outlet Control, Corrugated Metal Box, Concrete Bottom, Rise/Span < 0.3
Appendix 8C-22	Outlet Control, Corrugated Metal Box, Concrete Bottom, 0.3 <= Rise/Span < 0.4
Appendix 8C-23	Outlet Control, Corrugated Metal Box, Concrete Bottom, 0.4 <= Rise/Span < 0.5
Appendix 8C-24	Outlet Control, Corrugated Metal Box, Concrete Bottom, 0.5 <= Rise/Span
Appendix 8C-25	Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, Rise/Span < 0.3
Appendix 8C-26	Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, 0.3 <= Rise/Span < 0.4
Appendix 8C-27	Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, 0.4 <= Rise/Span < 0.5
Appendix 8C-28	Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, 0.5 <= Rise/Span
Appendix 8C-29	Inlet Control, Oval Concrete, Long Axis Horizontal
Appendix 8C-30	Inlet Control, Oval Concrete, Long Axis Vertical
Appendix 8C-31	Critical Depth, Oval Concrete, Long Axis Horizontal
Appendix 8C-32	Critical Depth, Oval Concrete, Long Axis Vertical
Appendix 8C-33	Outlet Control, Oval Concrete, Long Axis Horizontal or Vertical
Appendix 8C-34	Inlet Control, Corrugated Metal Pipe-Arch
Appendix 8C-35	Inlet Control, Structural Plate Pipe-Arch, 18” Corner Radius
Appendix 8C-36	Inlet Control, Structural Plate Pipe-Arch, 31” Corner Radius
Appendix 8C-37	Critical Depth, Standard Corrugated Metal Pipe-Arch
Appendix 8C-38	Critical Depth, Structural Plate Corrugated Metal Pipe-Arch, 18” Corner Radius
Appendix 8C-39	Outlet Control, Standard Corrugated Metal Pipe-Arch
Appendix 8C-40	Outlet Control, Structural Plate Corrugated Metal Pipe-Arch, 18” Corner Radius
Appendix 8C-41	Inlet Control, Corrugated Metal Arch, 0.3 <= Rise/Span < 0.4
Appendix 8C-42	Inlet Control, Corrugated Metal Arch, 0.4 <= Rise/Span < 0.5
Appendix 8C-43	Inlet Control, Corrugated Metal Arch, 0.5 <= Rise/Span
Appendix 8C-44	Critical Depth, Corrugated Metal Arch
Appendix 8C-45	Outlet Control, Corrugated Metal Arch, Concrete Bottom, 0.3 <= Rise/Span < 0.4
Appendix 8C-46	Outlet Control, Corrugated Metal Arch, Concrete Bottom, 0.4 <= Rise/Span < 0.5
Appendix 8C-47	Outlet Control, Corrugated Metal Arch, Concrete Bottom, 0.5 <= Rise/Span
Appendix 8C-48	Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.3 <= Rise/Span < 0.4
Appendix 8C-49	Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.4 <= Rise/Span < 0.5
Appendix 8C-50	Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.5 <= Rise/Span
Appendix 8C-51	Inlet Control, Structural Plate Corrugated Metal, Circular or Elliptical
Appendix 8C-52 Inlet Control, Structural Plate Corrugated Metal Arch, High and Low Profile
Appendix 8C-53 Critical Depth, Structural Plate Ellipse, Long Axis Horizontal
Appendix 8C-54 Critical Depth, Structural Plate Arch, Low and High Profile
Appendix 8C-55 Throat Control, Circular Section, Side-Tapered
Appendix 8C-56 Face Control, Non-Rectangular Section, Side-Tapered to Circular
Appendix 8C-57 Throat Control, Box Section, Tapered Inlet
Appendix 8C-58 Face Control, Box Section, Side-Tapered
Appendix 8C-59 Face Control, Box Section, Slope-Tapered
Appendix 8C-60 Discharge Coefficients for Roadway Overtopping
Appendix 8C-61 Circular Pipe Flow Chart (Diameter = 12")
Appendix 8C-62 Circular Pipe Flow Chart (Diameter = 15")
Appendix 8C-63 Circular Pipe Flow Chart (Diameter = 18")
Appendix 8C-64 Circular Pipe Flow Chart (Diameter = 21")
Appendix 8C-65 Circular Pipe Flow Chart (Diameter = 24")
Appendix 8C-66 Circular Pipe Flow Chart (Diameter = 27")
Appendix 8C-67 Circular Pipe Flow Chart (Diameter = 30")
Appendix 8C-68 Circular Pipe Flow Chart (Diameter = 33")
Appendix 8C-69 Circular Pipe Flow Chart (Diameter = 36")
Appendix 8C-70 Circular Pipe Flow Chart (Diameter = 42")
Appendix 8C-71 Circular Pipe Flow Chart (Diameter = 48")
Appendix 8C-72 Circular Pipe Flow Chart (Diameter = 54")
Appendix 8C-73 Circular Pipe Flow Chart (Diameter = 60")
Appendix 8C-74 Circular Pipe Flow Chart (Diameter = 66")
Appendix 8C-75 Circular Pipe Flow Chart (Diameter = 72")
Appendix 8C-76 Circular Pipe Flow Chart (Diameter = 84")
Appendix 8C-77 Circular Pipe Flow Chart (Diameter = 96")
Appendix 8C-78 Rectangular Channel Flow Chart (B = 2')
Appendix 8C-79 Rectangular Channel Flow Chart (B = 3')
Appendix 8C-80 Rectangular Channel Flow Chart (B = 4')
Appendix 8C-81 Rectangular Channel Flow Chart (B = 5')
Appendix 8C-82 Rectangular Channel Flow Chart (B = 6')
Appendix 8C-83 Rectangular Channel Flow Chart (B = 7')
Appendix 8C-84 Rectangular Channel Flow Chart (B = 8')
Appendix 8C-85 Rectangular Channel Flow Chart (B = 9')
Appendix 8C-86 Rectangular Channel Flow Chart (B = 10')
Appendix 8C-87 Rectangular Channel Flow Chart (B = 12')
Appendix 8C-88 Rectangular Channel Flow Chart (B = 14')
Appendix 8C-89 Rectangular Channel Flow Chart (B = 16’)
Appendix 8C-90 Rectangular Channel Flow Chart (B = 18’)
Appendix 8C-91 Rectangular Channel Flow Chart (B = 20’)
Appendix 8D-1 Recommended Manning’s n-Values
Appendix 8D-2 Entrance Loss Coefficients (K_e), Outlet Control, Full or Partly Full
Appendix 8E-1 Energy Dissipation
Appendix 8F-1 Handling Weight for Corrugated Steel Pipe (2-3/4” x 1/2” Corrugations)
Appendix 8F-2 Handling Weight for Corrugated Steel Pipe, (3” x 1” or 125 mm x 25 mm Corrugations)
Appendix 8F-3 Dimension and Weight of Minimum Size Counterweight
Appendix 8F-4 Diameter Dimensions and D^{2.5} Values for Structural Plate Corrugated Circular Pipe (9” x 2-1/2” Aluminum Corrugations)
Appendix 8F-5 Geometric Properties and Critical Flow Factors for Circular Conduits Flowing Full and Partly Full
Appendix 8F-6 Velocity Head and Resistance Computation Factors for Circular Conduits Flowing Full and Party Full
Chapter 8 - Culverts

8.1 Overview

8.1.1 Introduction

Culverts are usually defined as short conduits used to convey flow through a highway fill. The flow types that occur in culverts are many and varied. In this chapter, culvert design considerations are presented from the planning stage through the design stage. Design should consider hydraulic and structural capacity, erosion and debris control, environmental impacts, safety concerns, and legal aspects. Design concepts are covered and design procedures are summarized along with sample problems. Sources of additional information on culvert design are provided.

The FHWA web site for specific publications, http://www.fhwa.dot.gov/engineering/hydraulics/library_listing.cfm may be used for additional information on the following topics:

HDS-5, Hydraulic Design of Highway Culverts

Note: An errata sheet for this publication is available at the above web site

HEC-9, Debris Control Structures.

HEC-14, Hydraulic Design of Energy Dissipators for Culverts and Channels.

HEC-20, Stream Stability at Highway Structures.

Note: An errata sheet for this publication is available at the above web site

HDS-6, River Engineering for Highway Encroachments – Highways in the River Environment

8.1.2 Objective

The objective of this chapter is to provide the user with the information needed to select, plan, and design highway culverts based on VDOT methods when a Design Hydraulic Study is required by the Location Hydraulic Study. Using the information provided, the user will be able to design conventional culverts. The chapter also provides references, which will enable the user to apply special culvert designs for unusual circumstances. For open bottom structures, structures with a combined width of 20' or more, or a base flood discharge of > 500 cfs refer to Chapter 12 unless exempted by VDOT Hydraulics staff.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-1 of 77
8.2 Design Policy

The following Federal and VDOT policies will guide the selection, planning, and design of highway culverts:

- All culverts should be hydraulically designed
- The overtopping flood selected should be consistent with the class of highway and commensurate with the risks at the site
- Survey information should include topographic features, channel characteristics, aquatic life, high-water information, existing structures and other related site-specific information
- Culvert location in both plan and profile should be investigated to consider sediment build-up in the barrels, upstream, or downstream of the culvert
- The cost savings of multiple use culverts (utilities, stock and wildlife passage, land access and fish passage) should be weighed against the advantages of separate facilities
- Culverts should be designed to accommodate debris or proper provisions should be made for debris maintenance
- Material selection should consider service life, which includes abrasion and corrosion
- Culverts should be located and designed to present a minimum (reasonable) hazard to traffic and people
- The detail of documentation for each culvert site should be commensurate with the risk and importance of the structure
- Where practicable, some means should be provided for personnel and equipment access to facilitate maintenance
- Culverts should be regularly inspected and maintained
- The impacts on the base flood (100-year flood event) should be evaluated on all culverts, regardless of the drainage area size
8.3 Design Criteria

Criteria for the planning and design of culverts are discussed in this section. These criteria should be considered for all culvert designs.

8.3.1 Site Criteria

The following criteria relate to site conditions, which affect the selection of a particular culvert type, geometry, and debris protection.

8.3.1.1 Structure Type Selection

Often, a choice must be made between a culvert and a bridge at a given site. In making that decision, the following criteria should be considered:

Culverts are used:
- Where bridges are not hydraulically required or feasible
- Where debris and ice are tolerable
- Where a culvert is more economical than a bridge
- Where environmentally acceptable

Bridges are used:
- Where culverts cannot be used
- Where a bridge is more economical than a culvert
- To satisfy land use requirements
- To mitigate environmental impacts caused by a culvert
- To avoid floodway encroachments
- To accommodate ice and large debris
- To avoid cost and impact of channel diversions necessary for culvert construction

Because of the numerous types of drainage structures that are available, a general rule would dictate that various types such as box culverts, pipe culverts, standard bridges, etc., be taken into consideration when determining the type of proposed structure.

This design evaluation should consider cost comparisons, construction time, earth movement, maintenance, and service life expectancy.

Design Considerations:
- All non-rigid culverts:
 - are comparatively flexible
 - rely on uniform soil pressure around the entire circumference of the structure to maintain proper and equal load distributions
 - are more sensitive to improper bedding and backfill than rigid structures

Due to the magnitude of the changes to this section, shading has been omitted.
• Structural plate pipe arch culverts:
 o concentrate considerable pressure in the haunch area
 o require near perfect backfill and compaction in haunch area during construction
 o should be avoided wherever alternate structural shapes are feasible, such as:
 1. aluminum or steel box culverts
 2. bottomless arch culverts on footings
 3. circular culverts buried below streambed

8.3.1.2 Topography
The culvert length and slope should be chosen to fit the existing topography, to the degree practicable: the culvert invert should be aligned with the channel bottom and the skew angle of the stream, except in instances where countersinking one or more culvert barrels is needed to satisfy environmental requirements.

8.3.1.3 Debris Control
Debris control should be designed using the FHWA’s Hydraulic Engineering Circular No. 9, "Debris-Control Structures" and should consider:

• Where experience or physical evidence indicates the watercourse will transport a heavy volume of debris
• Culverts located in mountainous or steep regions of the state
• Culverts that are under high fills
• Where clean-out access is limited (However, access must be available to clean out and otherwise maintain the debris control device)

8.3.1.4 Soil and Water Data
The pH and resistivity of the soil and water as well as the velocity of flow, where an abrasive bed load is present or anticipated, are major factors in determining service life of metal pipe. An evaluation of the pH, resistivity and abrasive bed load potential must be conducted at each location where metal pipe is an allowable option and where any of the following conditions exist:

• Diameter or span of 36” or greater. For multiple pipe installations, the span is measured between the interiors of the outside walls of the outer most pipes and is measured along a line perpendicular to the barrel of the pipe
• Culvert is to be installed in a live stream environment (perennial or intermittent)
• Culvert is to be installed in an area of documented premature pipe failure

The pH and resistivity analysis of the soil and water are to be requested from the Materials Division for each culvert location meeting the noted criteria. In areas of documented premature pipe failure, the pH and resistivity analysis is to be requested for any type of proposed pipe material.

The locations where pH and resistivity information is needed should be noted on the plans that are used to request culvert subsurface information from the Materials Division.

Due to the magnitude of the changes to this section, shading has been omitted.
It is recognized that the pH values of the soil and water could experience seasonal changes during the course of the year. Should the Materials Division feel that the results of their initial pH test are not a true representation of the most severe conditions that the culvert will be exposed to, they should perform additional test and provide their best recommendation for the values to be used in determining the allowable pipe materials.

8.3.1.5 Protective Coating for Structures Exposed to Tidal Water or Corrosive Environment

Treatment of concrete exposed to the normal ebb and flow of tidal water is defined in Section 404 of the VDOT Road and Bridge Specifications. Corrosive environment may be indicated in certain geographic areas by the degradation of concrete culverts, concrete lined ditches or other concrete structures. Proposed concrete items in these areas should have a protective coating or alternative materials should be considered.

The Drainage Designer is responsible for preliminary determination for need and location of protective coating and is to specify in the drainage structure description where protective coating is required.

The final determination for need and location of protective coating should be made by the Materials Division. The request for the final determination should be made either by the use of Form LD-252 or direct contact between the Drainage Designer and the Materials Division.

The Drainage Designer is responsible for ensuring that the following notation is noted in the final drainage structure description on the plans and in the drainage summary:

Pipe or structure is to have protective coating applied in accordance with Section 404 of the VDOT Road and Bridge Specifications.

8.3.1.6 Requesting Data and Materials Division Recommendations

The Drainage Designer will determine locations where subsurface investigation and other culvert data/recommendations are required.

Subsurface, pH, resistivity, abrasive bed load data and channel bed material classification and recommendations for bedding, pipe camber and protective coating will be requested by the Roadway Designer, from the Materials Division, on Form LD-252. This request will be made immediately after locations requiring such information have been determined by the Drainage Designer or as soon after Field Inspection as possible.
8.3.1.7 Subsurface Investigation

Subsurface data will be requested for all culvert installations with a diameter or span of 36” or greater. For multiple pipe installations, the span is measured between the interiors of the outside walls of the outer most pipes and is measured along a line perpendicular to the barrel of the pipe. Subsurface data may be requested for culvert installations with smaller diameter or if deemed necessary. Subsurface data should be requested on all pipes of any size 24” or greater in diameter that are to be bored or jacked.

Subsurface data should be requested for all SWM basins in order to determine if:
- The native material will support the dam and provide adequate protection for seepage under the dam
- Excavation from the basin may be used to construct the dam
- Rock may be encountered in the area of excavation
- A high water table is present which may alter the performance of the SWM basin

Borings shall be taken and information provided in accordance with Section 305.06 of the Materials Division Manual of Instructions (MOI). For large basins, more than one boring for the dam and one boring for the area of the basin may be needed. The number and locations of the borings are to be determined and requested by the Drainage Designer.

The existing subsurface soils data is not to be shown on the plans, however, the recommended amount of additional excavation and type of backfill material is to be shown in the drainage description.

At each location where a subsurface investigation is requested for pipe or box culvert installations, one should evaluate and classify the bed material in the outlet channel in close proximity of the downstream end of the proposed culvert. The bed material is to be classified in accordance with the AASHTO Soil Classification System.

This information is needed in order to evaluate the scour potential at the culvert outlet. This information is to be requested by the Drainage Designer along with the other soil and water data for each appropriate culvert installation.

8.3.1.8 Pipe Camber

Construction of longitudinal camber in a pipeline shall be considered when all of the following conditions are present:
- Grade of the pipe is less than 0.5%
- Fills (not height of cover) greater than 20’
- Diameter or span 36” or greater
- Foundation/subsurface is subject to settlement

Due to the magnitude of the changes to this section, shading has been omitted.
The Drainage Designer will request that the Materials Division determine the amount of anticipated settlement along the pipeline. This request will accompany the request for culvert subsurface data. The plan description for the structure will then note a camber equal to the amount of anticipated settlement.

8.3.2 Hydraulic Criteria

These criteria relate to the hydraulic design of culverts based on flood flows, upstream and downstream water surface elevations, allowable velocities, and flow routing.

8.3.2.1 Design Storm

For stream crossing and longitudinal encroachments the inundation of the travelway and clearance below the low shoulder dictates the level of traffic services provided by the facility. New construction and projects that increase the level of service of the roadway shall have a minimum 18" clearance from the low shoulder of the crossing to the design storm as determined by the functional classification of roadways presented in Chapter 6, Hydrology. The analysis will document the flood elevations for the base flow, 2, 5, 10, 25, 50 and Base Flood events.

The above requirements are minimum, and design deviation for less than the minimum flood event requires approval from VDOT. Culverts should be designed to pass floods greater than those noted above where warranted by potential risk to adjacent property, loss of human life, injury, or heavy financial loss. Designing to a higher flood event does not require special approval, but may require justification if it results in an increase in cost without documented benefit to adjacent property and the public.

Future development of contributing watersheds and floodplains that have been zoned or delineated in local or regional planning documents (not flood plain zones) should be considered in determining the design flood. For the Interstate System, development during a period 20 years in the future should be considered. Adopted regional plans and approved zoning will be considered in determining the design discharge on all systems.

8.3.2.2 Allowable Headwater

The allowable headwater is the depth of water that can be ponded at the upstream end of the culvert during the design flood, measured from the culvert inlet invert. The headwater depth or elevation may also be limited by giving due consideration to inlet and outlet velocities and the following upstream water surface elevation controls:

- Not higher than an elevation that is 18" below the outer edge of the shoulder at its lowest point in the grade
- Upstream property damage
- Elevations established to delineate NFIP or other floodplain zoning
- HW/D is at least 1.0 and not to exceed 1.5 where HW is the headwater depth from the culvert inlet invert and D is the height of the barrel
- Low point in the road grade which is not necessarily at the culvert location
- Elevation of terrain or ditches that will permit flow to divert around the culvert

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-7 of 77
8.3.2.3 Review Flood

After sizing a drainage facility, it will be necessary to review this proposed facility with a higher discharge. This is done to ensure that there are no unexpected flood hazards inherent in the proposed facilities. The review flood is usually the base flood and in some cases, a flood event larger than the base flood is used for analysis to ensure the safety of the drainage structure and nearby development.

8.3.2.4 Tailwater Relationship – Channel

When the tailwater relationship is developed for the receiving channel, the designer should:

- Evaluate the hydraulic conditions of the downstream channel to determine tailwater depths for a range of discharges which include the check storm (see Chapter 6, Hydrology)
- For minor drainage installations with a 100-year discharge of less than 500 cfs, calculate the tailwater using a single cross section analysis
- For sensitive locations calculate the tailwater depth using step-backwater methods (such as HEC-RAS, etc.) or other step methods as appropriate. (Step-backwater methods yield the most accurate tailwaters)
- When using step-backwater methods to define barrel losses for subcritical flow in the culvert barrel, use critical depth at the culvert outlet if it is greater than the channel depth
- When using full flow nomographs to define barrel losses, use a calculated tailwater based on critical depth \((d_c)\) and the height of the barrel \((D)\) when that term \([TW = (d_c + D)/2]\) is greater than the depth of flow in the outlet channel
- Use the headwater elevation of a downstream culvert if it is greater than the channel depth

8.3.2.5 Tailwater Relationship - Confluence or Large Water Body

When the tailwater relationship is developed from the confluence of a large body of water, the designer should:

- Use the highwater elevation that has the same frequency as the design flood if events are known to occur concurrently (statistically dependent)
- If events are statistically independent, evaluate the joint probability of flood magnitudes and use a likely combination resulting in the greater tailwater depth. Guidelines are provided in Joint Probability Analysis, Chapter 6, Appendix 6I.
- If tidal conditions are present at the site, use the mean high tide
8.3.2.6 Maximum Outlet Velocity

Our culvert outlet protection procedure has emphasis on the existing soil type to: 1) insure protection of the downstream channel or swale where material or lining in the downstream channel or swale may be unstable (erodible) under the anticipated velocities exiting the culvert, and 2) insure protection of the culvert end by providing measures to prevent the formation of a scour hole at the culvert outlet.

The type of material in the swale/channel at culvert outlets will need to be determined based on observations or field borings. The allowable velocity for natural material can be found in the table shown in Appendix 7D-2 of the VDOT Drainage Manual. The guidelines and procedures presented herein shall be implemented on all VDOT projects and those which will ultimately come under Department jurisdiction.

Highlights of these procedures/details are:

1. Maintains current rip rap sizes for outlet velocities 8 fps and greater
2. Establishes new riprap size for outlet velocities up to 8 fps
3. Allows the use of EC-3 Type 3 for velocities less than 6 fps
4. Maintains current apron dimensions for culvert installations with a total hydraulic opening of less than 7 ft².
5. Increases apron length to five times the height of the culvert for culvert installations with a total hydraulic opening of 7 ft² or greater.
6. Evaluates need for outlet protection based on 2-year culvert outlet velocity and allowable velocity of material in outlet channel or swale
7. Evaluates type of outlet protection required based on culvert outlet velocity for design discharge

The objectives of these details/procedures are to:

1. Minimize impacts to right of way of easement areas at smaller culvert sites
2. Minimize length of stream impacts
3. Minimize need for outlet protection where channel/swale material will be stable for culvert outlet velocities
4. Provide alternative to riprap at sites with low outlet velocities
5. Satisfy DCR Minimum Standard 11
OUTLET PROTECTION DETAILS

- Dimensions Of Outlet Protection Apron:
 - Type A Installation – Minimum 3H Length & Minimum 3S Width
 - Type B Installation – Minimum 5H Length & Minimum 3S Width
 - Where:
 S = Span of Culvert
 H = Height of Culvert
 - For a multiple culvert line installations the largest S and H, dimensions of the individual culvert lines should be used in determining the minimum apron length dimensions.

- Outlet Protection Material
 - Standard EC-3 Type 3
 - Class A1 – Class AI Dry Riprap
 - Class I – Class I Dry Riprap
 - Class II – Class II Dry Riprap

NEW OUTLET PROTECTION PROCEDURE

The following procedure shall be used to analyze the need for outlet protection on:

- All cross drain culverts
- All storm drain outlet pipes
- All entrance and crossover pipes with a diameter of 24” (or equivalent hydraulic opening) or greater

Step 1 - Determine if Culvert Outlet Protection is required for protection of swale or channel.

A. Compute culvert outlet velocity for 2-year design flood.
B. Compare 2-year design flood culvert outlet velocity to allowable velocity for outlet swale/channel material or lining.
 - Swale/channel material type based on field borings/observations or proposed lining.
 - Allowable velocity for natural swale/channel material based on VDOT Drainage Manual Chapter 7 - Appendix 7D-2.
C. If two year design storm culvert outlet velocity is equal to or less than allowable velocity for swale/channel material, no Culvert Outlet Protection is required for swale/channel protection.
 - Go to Step 2.
D. If two year design flood culvert outlet velocity is greater than allowable velocity for swale/channel material, Culvert Outlet Protection is required.
 - Go to Step 3.
Step 2 - Determine Culvert Outlet Protection required for culvert end protection
 A. Compute culvert outlet velocity for culvert design flood.
 B. If culvert outlet velocity for culvert design flood is less than 6 fps, Culvert Outlet Protection is not required for culvert end protection.
 ➢ Stop
 C. If culvert outlet velocity for design storm is 6 fps or greater, Culvert Outlet Protection is required for culvert end protection.
 ➢ Go to Step 3.

Step 3 – Determine Class of Culvert Outlet Protection to use.
 A. When EC-1 Culvert Outlet Protection is required by either Step 1 or Step 2, EC-3 Type 3 or the Class of EC-1 to be specified shall be based on the culvert design storm outlet velocity with the following velocity limitations.
 • EC-3 Type 3 – maximum outlet velocity is 6 fps.
 • EC-1 Class A1 – maximum outlet velocity is 8 fps.
 • EC-1 Class I – maximum outlet velocity is 14 fps.
 • EC-1 Class II – maximum outlet velocity is 19 fps.
 • Use Special Design Culvert Outlet Protection for outlet velocity greater than 19 fps.
 ➢ Go to Step 4

Step 4 - Determine Type of EC-1 Installation to use.
 A. When Culvert Outlet Protection is required by either Step 1 or Step 2, specify the Type of Installation to use based on the total hydraulic opening of the culvert installation.
 • Use Type A Installation for culvert installations with a total hydraulic opening of less than 7 ft².
 • Use Type B Installation for culvert installations with a total hydraulic opening of 7 ft² or greater.

PLAN DESCRIPTION
 • _____ Sq. Yds. (Tons) Standard EC-1 Class ____ Required Type _____ Installation
 • _____ Sq. Yds. Standard EC-3 Type 3 Culvert Outlet Protection Required

Road and Bridge Standard drawings 113.01 and 113.04 and Road and Bridge Specification Sections 414 and 606 have been revised to incorporate these protection measure details.
8.3.2.7 Minimum Velocity
The minimum velocity in a culvert barrel should be adequate to prevent siltation during the design storm flows. When the streambed material size is unknown, use three (3) feet per second.

8.3.2.8 Storage Routing - Temporary or Permanent
It is VDOT practice to design culverts without recognizing or calculating the available upstream floodplain storage. The Department does not permit the consideration of any upstream floodplain storage, with the resultant attenuation of peak discharges, in the design of any culverts, bridges, or other drainage structures for either its own facilities or those that would ultimately come under its jurisdiction.

The Department will permit such consideration where it can be clearly shown that the drainage structure and roadway embankment in question and the upstream floodplain area have been designed to function as an impoundment for such facilities as ponds, lakes, detention/retention basins, etc. Another exception would be where approved FEMA delineated floodplain studies are in effect which indicate that the peak discharges have been reduced due to consideration of upstream flood storage.

VDOT’s State Hydraulics and Utilities Engineer must approve any exception to the above.

8.3.2.9 Roadway Overtopping
Roadway overtopping should not be allowed for discharges equal to or less than the design discharge for new culvert installations. Overtopping is permitted to limit impacts to the 100-year flood event.

Roadway overtopping may occur when evaluating existing culvert installations for current design flows.

If roadway overtopping is indicated for the design flood event, it is necessary to consider the risk to highway users of loss of life, injury, and property damage. The highway embankment may be at risk based on:

- The depth of flow across the roadway
- The velocity of flow across the roadway
- The duration of roadway overtopping
- The resistance of the embankment to scour

8.3.3 Geometric Criteria

Design criteria related to the culvert geometry, including the inlet structure, the barrel, and the outlet structure are summarized in this section.

8.3.3.1 Culvert Size and Shape
The culvert size and shape selected should be based on engineering and economic criteria related to site conditions.

- For the Interstate System, the minimum size of main line culverts will generally be 24” due to maintenance considerations
- For other systems, 15” will generally be the minimum culvert diameter, except that hydraulically adequate 12” diameter culverts may be used if the culvert length is less than 50’ or if it is located under an entrance
- Use arch or elliptical shapes only if required by hydraulic limitations, site characteristics such as cover, structural criteria, or environmental criteria

8.3.3.2 Multiple Barrels
Multiple barrel culverts should be designed to utilize the natural dominant channel with minimal or preferably no widening of the channel so as to avoid conveyance loss through sediment deposition in some of the barrels. An example of this concept would be a situation wherein a quadruple 10’x10’ box culvert is to be placed in a 15’ wide channel. The gross waterway opening (i.e. 400 ft²) and/or the configuration of that opening must be reduced for computational purposes commensurate with the amount of over bank area which will be displaced, on the premise that the natural stream channel and overbank configuration will reestablish through the culvert over time. It may even be necessary to place temporary timber/rock weirs to assist this process. Multiple barrels should be avoided where:

- The approach flow is high velocity, particularly if supercritical (These sites require either a single barrel or special inlet treatment to avoid adverse hydraulic jump effects)
- Fish passage is required unless special treatment is provided to ensure adequate low flow. When fish passage is required, all barrels are laid 6” below the streambed and a low flow diversion should be used to maintain the necessary depth in the appropriate barrel(s)
- A high potential exists for debris clogging the culvert inlet

8.3.3.3 Culvert Skew
The culvert skew should not exceed 45°, as measured from a line perpendicular to the roadway centerline, without the approval of VDOT. Furthermore, the Drainage Designer is to request, from the Structure and Bridge Division, the required details for modification of the standard drawings. This information is to be requested on Form LD-423. Box Culvert skews should be shown to the nearest 5° increment.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-13 of 77
8.3.3.4 **End Treatment (Inlet or Outlet)**
The culvert inlet type should be selected from the following categories based on the considerations given and the inlet entrance loss coefficient, K_e. Appendix 8D-2 provides recommended values of K_e. Consideration should also be given to safety since some end treatments can be hazardous to errant vehicles. All culverts 48” diameter and larger should employ VDOT’s standard headwalls, where available, or a comparable special design end treatment where a standard treatment does not apply.

- End Treatments will be provided, regardless of the highway classification, on:
 - All culverts conveying a live stream
 - All circular culverts with a diameter of 48” or greater
 - All culverts of an arch or elliptical shape with a hydraulic opening of 12 ft2 or greater
 - All multiple line structures with a combined hydraulic opening of 12 ft2 or greater

- Types of End Treatments:
 - Standard endwall
 - Modified endwall or special design endwall
 - Special Design Concrete Slab End Treatment, Special Design Drawing No. isd-2045 and msd-2045
 - Other types of end treatment with a foundation of sufficient width and depth to protect the culvert bedding material from seepage

The Standard ES-2 drawing in the Road and Bridge Standards includes a pay line designation that should not be interpreted as a required length of pipe to be attached to the end section. The connector section length may be whatever length the supplier wishes to attach, but the portion of the culvert included within the limits of the "C" dimension will be considered, for payment purposes, to be included in the price bid for the end section.

The supplier may furnish metal end sections with no connector section or with whatever length of connector section they determine convenient. The supplier and contractor will be responsible for determining what culvert pipe length will be required based on the length of connector sections, if any, that is furnished. Regardless of the length connector furnished as an attachment to the end section, that portion of the culvert designated "C" in the standard drawing will be measured and paid for as a part of the end section.

It is especially important that inspectors and other field personnel be aware of these instructions in order that an end section will not be rejected simply because the length of the connector is not the same as that shown on the Standard drawing. This variance is entirely acceptable provided the contractor has appropriately adjusted the length of the pipe.

The following sections present pros and cons for each type of end treatment.
8.3.3.4.1 Projecting Inlets or Outlets
Projecting inlets or outlets extend beyond the roadway embankment. These structures:

- Are susceptible to damage during roadway maintenance and from errant vehicles
- Have low construction cost
- Have poor hydraulic efficiency for thin materials such as corrugated metal
- Should not be used for culverts 48" diameter and larger
- Are subject to buoyancy

8.3.3.4.2 Prefabricated End Sections
Prefabricated end sections are available for both corrugated metal and concrete pipes. These sections:

- Should not be used for culverts 48" diameter or larger
- Retard embankment erosion and incur less damage from maintenance
- May improve projecting pipe entrances by increasing hydraulic efficiency, reducing the accident hazard, and improving their appearance
- Are hydraulically equivalent to a headwall, but can be equivalent to a beveled or side-tapered entrance if a flared, enclosed transition takes place before the barrel
- Are susceptible to buoyancy and may need concrete anchor blocks to resist hydrostatic uplift forces

8.3.3.4.3 Headwalls with Bevels
Headwalls with bevels are the standard VDOT design. These headwalls:

- Increase culvert efficiency
- Provide embankment stability and embankment erosion protection
- Provide protection from buoyancy
- Shorten the required structure length
- Reduce maintenance damage

8.3.3.4.4 Improved Inlets
Improved inlets are special designs which:

- Should be considered for exceptionally long culverts which will operate in inlet control or widening projects with increased flow to eliminate replacing existing culvert barrel(s)
- Can increase the hydraulic performance of the culvert, but may also increase total culvert cost
- If slope-tapered, should not be considered where fish passage is required
- Can increase outlet velocity

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-15 of 77
8.3.3.4.5 Wingwalls
Wingwalls are generally used in conjunction with headwalls and:

- Are used to retain the roadway embankment to avoid a projecting culvert barrel
- Are used where the side slopes of the channel are unstable
- Are used where the culvert is skewed to the normal channel flow
- Provide the best hydraulic efficiency if the flare angle is between 30° and 60°
- Are governed by VDOT height of embankment guidelines

8.3.3.4.6 Aprons
Aprons are special designs that can be used at culvert inlets and outlets and:

- Are used to reduce scour from high headwater depths or from high approach velocities in the channel
- Should extend at least one pipe diameter upstream
- Should not protrude above the normal streambed elevation

8.3.3.4.7 Cut-off Walls
Cut-off walls may be used at the entrance or the outlet of a culvert, and:

- Are used to prevent piping along the culvert barrel and undermining at the culvert ends
- Are an integral part of all of VDOT’s standard endwalls
- Should be included (a minimum of 1.5' in depth) when other than VDOT standard endwalls are employed

8.3.3.4.8 Trash Racks or Debris Deflectors
Trash racks or debris deflectors may be necessary at sites where large amounts of detritus are produced. Such structures:

- May create clogging problems
- Require maintenance
- Should only be used where there is an established need

8.3.4 Safety Considerations

Each site should be inspected periodically to determine if safety problems exist for traffic or for the structural safety of the culvert and embankment.

Culvert headwalls and endwalls should be located outside the clear zone distance of the highway. The clear zone distance from the edge of pavement is a function of the design speed of the roadway. The typical clear zone distance for a high-speed highway is 30’. The designer is referred to the VDOT Road Design Manual for further information and to AASHTO for additional guidance. An exception to this clear zone requirement occurs if traffic is separated from the walls by guardrail that is required due to obstacles other than the walls.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-16 of 77
Where feasible, grate drop inlets or load-carrying grates may be substituted for culvert headwalls or endwalls, and thereby reducing safety hazards. However, in making this substitution, consideration must be given to the possibility of creating a greater safety hazard by increasing the potential for flooding if the grates clog. The drainage designer should continuously coordinate roadway related issues and information with the roadway design team.

Pipe endwalls with load carrying grates (Standards EW-11 and EW-11A) are designed as a safety feature to prevent an errant vehicle from encountering the hazards of a collision with conventional endwalls or end sections. They are intended for use on low height embankments which would be traversable by an out of control vehicle and where guardrail would otherwise not be required or desired.

Standard EW-11 is to be used for cross drain culverts. The grate configuration must be installed perpendicular to the edge of the shoulder line.

Standard EW-11A is designed for use at crossover locations where there is no other alternative to placing a pipe culvert under the crossover.

The Drainage Designer is to carefully study each situation before specifying Standard EW-11 or EW-11A Endwalls on the plans. Guidelines for the use of these structures are as follows:

- Pipe endwalls with load carrying grates are to be used with traversable slopes (3:1 or flatter) on all classes of highways.
- Pipe endwalls with load carrying grates are not to be installed where guardrail is required.
- Pipe endwalls with load carrying grates will not be required on culverts with ends located outside of the normal clear zone width. For clear zone width guidelines, see Section A-2 of the VDOT Road Design Manual.
- Crossover locations should be thoroughly studied to eliminate, if possible, the need for a pipe culvert under the crossover. In the event there is no other alternative, the Standard EW-11A is to be specified.
- When pipe endwalls with load carrying grates are specified, the plans must be reviewed to ensure that all other hazards in the area are treated in an equally safe manner.

8.3.5 Allowable Pipe Materials

Refer to Road and Bridge Standards PC-1, as well as Section 9.4.9.4 of the VDOT Drainage Manual
8.3.6 Other Design Considerations

8.3.6.1 Buoyancy Protection
When water is displaced by embankment material or by a culvert, a buoyant or upward force exists. If the buoyant force is greater than the weight of the object displacing the water, flotation will occur. Pipe flotation (or hydrostatic uplift) can be a problem where the following conditions exist:

- Lightweight pipe is used (i.e., corrugated metal or plastic)
- Pipe is on a steep grade (usually inlet control)
- There is little or no weight on the end of the pipe (i.e., flat embankment slopes, minimal cover and/or no endwalls)
- High headwater depths (HW/D > 1.0)

8.3.6.2 Relief Opening
Where multiple-use culverts or culverts serving as relief openings have their outlet set above the normal stream flow line, special precautions should be provided to prevent headcuts, erosion from undermining the culvert outlet, or damage to downstream properties due to concentrated flow.

8.3.6.3 Land Use Culverts
Land use culverts are installations where storm drainage requirements are combined with other land based uses, such as farm or pedestrian crossings. For such installations:

- The land use is temporarily forfeited during the design flood, but is available during lesser floods
- Two or more barrels may be required, with one situated to be dry during floods less than the selected design flood
- The outlet of the higher land use barrel may need protection from headcutting
- The culvert should be sized so as to ensure that it can serve its intended land use function up to and including during a 2-year flood
- The height and width constraints should satisfy the hydraulic or land use requirements, whichever use requires the larger culvert

8.3.6.4 Erosion and Sediment Control
Temporary erosion and sediment control measures should be included in the construction plans. These measures include the use of the following: sediment basins and traps, silt barriers, dewatering basins, filter cloth, temporary silt fence and rock check dams. These measures should be utilized as necessary during construction to minimize pollution of streams and damage to wetlands. For more information, see Chapter 10, Erosion and Sediment Control.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-18 of 77
8.3.6.5 Environmental Considerations and Fishery Protection

In addition to controlling erosion, siltation and debris at the culvert site, care must be exercised in selecting the location of the culvert. Where compatible with good hydraulic engineering a site should be selected that will permit the culvert to be constructed in the "dry" or that will cause the least impact to the stream or wetlands. This selection must consider the entire site involvement, preferably eliminating or at least minimizing the need for entrance and exit channels.

Where there is a U.S. Army Corps of Engineers jurisdictional stream bed, as determined by the Environmental Division, both up and downstream inverts of the proposed culvert will be set lower than the normal flow line of the stream in order to provide for the re-establishment of the streambed and low flow depth in the culvert that will facilitate fish passage.

Where the culvert is a multiple barrel or multiple cell structure, and all barrels or cells are to be lowered below stream grade a low flow diversion should be used to maintain low flow in the appropriate barrel(s). The grade of a culvert located to facilitate fish passage should never be steeper than the grade of the natural stream in the site area. Preferably, the culvert barrel should be flattened as necessary to limit the velocity of flow in the culvert. The Corps of Engineers' culvert countersinking requirements are described in detail in Section 8.3.7.

In areas of known fish habit, highway culverts are to be designed to accommodate the passage of fish. The design criteria for such culverts can be found in the following publications.

- An Analysis of the Impediments to Spawning Migrations of Anadromous Fish in Virginia Culverts (Pages 61 through 66) August 1985, by Mudre, Ney & Neves
- Nonanadromous Fish Passage in Highway Culverts Report No. VTRC 96-R6 October 1995 by Fitch

Summary of General Design Criteria:
- Criteria apply to normal water (ordinary high water) conditions. Set invert elevations of the low flow culvert 6" minimum below the streambed.
- Maintain a depth, width and velocity of flow in the culvert that matches, as nearly as practicable, the depth, width and velocity of flow in the natural channel up and down stream of the culvert.

8.3.6.6 Pipe in High Fills

Concrete pipe with a height of cover exceeding 30' requires Special Design Pipe, certified in accordance with Section 105 of VDOT’s Road and Bridge Specifications and Method A Bedding in accordance with Standard PB-1.

The drainage description for these pipes should specify:
- Special Design Concrete Pipe, Method A Bedding
- Pipe design to be in accordance with Section 105 of VDOT’s Road and Bridge Specifications

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-19 of 77
In order to facilitate inspection and future rehabilitation (if needed) of culverts in fills (not cover) of 20’ or greater, the minimum culvert size allowed/specifed should be a 60” diameter. On Lower Functional Classification (LFC) roadways, as defined in the Allowable Pipe Type Tables in the Road and Bridge Standard PC-1, the District Construction or Maintenance Engineer and/or the Resident Manager/Engineer may waive the minimum 60” diameter size requirement provided that locations where the hydraulic capacity would require a pipe diameter of less than 60”, the minimum pipe diameter shall be that necessary for adequate hydraulic conveyance plus 12” with a 36” minimum diameter and a 60” maximum diameter. The table below shows the minimum pipe diameter to use based on that required for hydraulic capacity.

<table>
<thead>
<tr>
<th>IF THE MINIMUM PIPE DIAMETER REQUIRED TO MEET HYDRAULIC CAPACITY IS:</th>
<th>THEN USE THIS PIPE DIAMETER IN FILLS > 20’:</th>
<th>DESIRABLE</th>
<th>MINIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12” – 24”</td>
<td></td>
<td>60”</td>
<td>36”</td>
</tr>
<tr>
<td>30”</td>
<td></td>
<td></td>
<td>42”</td>
</tr>
<tr>
<td>36”</td>
<td></td>
<td></td>
<td>48”</td>
</tr>
<tr>
<td>42”</td>
<td></td>
<td></td>
<td>54”</td>
</tr>
<tr>
<td>48”</td>
<td></td>
<td></td>
<td>60”</td>
</tr>
<tr>
<td>54”</td>
<td></td>
<td></td>
<td>60”</td>
</tr>
</tbody>
</table>

It is recognized that it will be potentially more difficult for the inspection, maintenance and future rehabilitation (if necessary) of culverts in high fill areas if a size smaller than a 60” diameter is utilized.

8.3.6.7 Pipe Rehabilitation (Pipe not Replaced)

When existing pipes are damaged or deteriorated such that they are no longer functional or their functionality has been considerably impacted, a decision needs to be made as to what type of retrofit method should be employed. These methods include replacing the existing pipe or rehabilitating it by leaving it in place and lining it with one of several approved materials. The Drainage Designer should refer to the following guidance pertaining to the appropriate pipe rehabilitation methods to be used on each project:

The Special Provision for Pipe Rehabilitation lists three possible methods for accomplishing this work:

- Corrugated steel pipe liner
- Flexible pipe liner
- Smooth wall steel pipe liner

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-20 of 77
Some issues to be considered in the initial decision making process of whether to install a new pipe or rehabilitate the existing pipe are as follows:

- What is the condition of the existing pipe and what are the deficiencies that need to be addressed?
- Is the existing pipe located in a “hostile environment”? For example, is the pH of the water and soil and the resistivity beyond the acceptable limits shown in Table C (page 107.21) of Road and Bridge Standard PC-1 for the applicable pipe material?
- What is the height of cover over the existing pipe? If the height of cover is ≤ 5', an economic evaluation should be performed to determine the feasibility of excavating and replacing, rather than rehabilitating the existing pipe. Where consideration is being given to the utilization of a flexible liner, an economic evaluation should be performed to determine the feasibility of excavating and replacing rather than lining the existing pipe, regardless of the height of cover.
- If considering a liner, what impact will the liner have on the hydraulic capacity of the existing pipe? This condition must be evaluated by a Hydraulic Engineer to determine if the liner reduces hydraulic capacity of the existing pipe to a point that upstream water surface elevations for the design storm event and the 100-year flood would be increased beyond that which is acceptable. If so, one option to consider would be to line the existing pipe and jack another line of pipe beside it to make up for the loss in hydraulic capacity.
- If using a liner, has the outlet velocity of the pipe increased as a result of changed hydraulic properties, i.e. decrease in Manning’s n value, decrease in flow area, etc.? This condition must be evaluated by a Drainage Design Engineer to determine if additional outlet protection (riprap) is required to dissipate outlet velocities.
- Has the deterioration of the pipe resulted in a situation where structural strength needs to be restored as part of the replacement method/material selected? This condition must be evaluated by a Structural and/or Materials Engineer to ensure the resulting repair provides sufficient strength to result in a safe and long lasting repair.

While these are some main points to consider in the initial decision making process for pipe rehabilitation, they are not all inclusive. Other issues relative to site-specific characteristics or limitations must also be taken into account in arriving at a final decision on the method of rehabilitation to use.

When considering a flexible liner, a decision matrix, as shown in Table A, can be useful in selecting the best type of flexible liner to utilize based on the existing pipe material and the noted deficiencies of the existing pipe or site limitations.

When using a Cured-in-Place Pipe (CIPP) liner as the method of rehabilitating an existing pipe, Scheduling and Contract Division’s Form C-9 (CIPP Inspection Checklist) shall be used by the VDOT Inspector to document the contractor’s pre-installation, installation and post-installation activities.

Due to the magnitude of the changes to this section, shading has been omitted.
TABLE A
FLEXIBLE LINER (METHOD D) TYPE SELECTION GUIDELINES

<table>
<thead>
<tr>
<th>Pipe Deficiency or Site Limitation</th>
<th>Pipe Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concrete</td>
</tr>
<tr>
<td>Minor Cracks</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Major Cracks and/or Spalls</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Joints Separated >1”</td>
<td>A, B, C, D</td>
</tr>
<tr>
<td>Coating Removed, NC</td>
<td>NA</td>
</tr>
<tr>
<td>Coating Removed, Min.C</td>
<td>NA</td>
</tr>
<tr>
<td>Coating Removed, Maj.C</td>
<td>NA</td>
</tr>
<tr>
<td>Minor Deformation, <5% of inside diameter</td>
<td>NA</td>
</tr>
<tr>
<td>Intermediate Deformation, 5% to 7% of inside diameter</td>
<td>NA</td>
</tr>
<tr>
<td>Major Deformation, >7% of inside diameter</td>
<td>NA</td>
</tr>
<tr>
<td>Height of cover</td>
<td>*</td>
</tr>
<tr>
<td>Access (Limited space to end of pipe, accessible by manhole or drop inlet)</td>
<td>A, B, D</td>
</tr>
<tr>
<td>Bends in pipe</td>
<td>A, B, D</td>
</tr>
</tbody>
</table>

* Note: An economic evaluation should be performed to determine the feasibility of excavating and replacing rather than lining the existing pipe.

LEGEND:
- Category A – Cured In Place Pipe (CIPP)
- Category B – Fold and Form Flexible Liner
- Category C – HDPE, PVC, or Polypropylene (PP) slip liners
- Category D – Spray-On Liner (only applicable for pipes 36” or larger)
- NA – Not applicable
- NC – No Corrosion
- Min.C – Minor Corrosion
- Maj.C – Major Corrosion

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-22 of 77
Note:
The VDOT Materials Division Approved Products List No. 38 Pipe Rehabilitation Systems should be consulted for the current products approved for use. This list is available at: http://www.virginiadot.org/business/resources/bu-mat-MD298-07.pdf

The document “Approved List 38 New Product Application Criteria, Individual Project Design Requirements, and Associated Construction Requirements to Ensure Valid Designs” should be consulted for design and construction requirements. This list is available at: http://www.virginiadot.org/business/resources/LocDes/AL38Criteria-1-25-13.pdf

8.3.6.8 Existing Box Culvert Extensions

When the extension of an existing box culvert is required, the Drainage Designer shall specify Standard BCE-01 as a part of the box culvert description on the plans.

8.3.6.9 Small Box Culverts

Box culverts with heights and widths less than 4’ should be avoided due to concerns with inspection and maintenance. If a box culvert with a height or width less than 4’ is needed (e.g., for extension of an existing structure), the District Drainage Engineer should be consulted to determine if other alternate hydraulic structures are available.

8.3.6.10 Pile Foundation Design for Box Culverts

When the Materials or Structures and Bridge Division recommends pile foundations for box culverts, details are to be requested, by the Road Designer, from the Structure and Bridge Division on Form LD-422.

8.3.6.11 Trenchless Applications (Culvert Replacement or New Pipe)

There are certain cases where it is not feasible to install pipe through the existing embankment by the open-trench method. The alternative is to replace or install the pipe through the embankment by a trenchless construction method. The Drainage Designer is to specify the trenchless construction method of the pipe on the plans, where applicable. The three methods of trenchless applications accepted by the Department are as follows:

- Jack and Bore
- Microtunneling
- Pipe Jacking
The Engineer shall select the appropriate trenchless construction method for the application, and develop the plan accordingly, while taking the following items under consideration:

- Pipe Application
- Pipe Depth
- Pipe Length
- Pipe Diameter
- Pipe Type
- The working space required for the entry and receiving pits, and all appurtenant items, and obtaining any required R/W
- Existing Subsurface Conditions

For any trenchless construction methods to be successful, the Engineer should perform a predesign survey of the existing surface features and subsurface conditions, especially along the proposed pipe alignment.

The predesign survey should include, but not be limited to the following:
- General Site Conditions
- Subsurface Utility Engineering (SUE) located in or near the proposed pipe alignment
- Geotechnical Investigations (including groundwater)
- Environmental Conditions
- Required Drive Lengths
- Pipe Diameters, Site Access/constraints
- Depth
- Grade
- Tolerances
- Potential Impact to Surface Activities, including Maintenance of Traffic (MOT)
- Location of Existing / Abandoned / Proposed Utilities
- Rights-of-Way Requirements

The Engineer shall refer the Manual of Instructions by VDOT’s Materials Division for requirements of geotechnical investigations required prior to trenchless pipe applications and/or construction.

The Engineer shall refer to Chapter 13 of the VDOT Survey Manual to properly locate the existing utilities and underground hazards located at the project site, and within and immediately adjacent to the preferred trenchless construction method.

The Engineer shall refer to Table B, Trenchless Technology Applications, to aid in selection of the appropriate trenchless construction method relative to the existing site conditions.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-24 of 77
Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-25 of 77
Table C - Applicability of Trenchless Technologies to Various Soil and Rock Conditions

<table>
<thead>
<tr>
<th>Soil and Rock Type</th>
<th>Jack and Bore</th>
<th>Micro-tunneling</th>
<th>Pipe Jacking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft to very soft clays, silts, and organic deposits</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Medium to very stiff clays and silts</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Hard clays and highly weathered shales</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Very loose to loose sands above the water table</td>
<td>M</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Medium to dense sands below the water table</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Medium to dense sands above the water table</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Gravel and cobbles with a diameter less than 2-4”</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Soils with significant cobbles, boulders, and obstructions with a diameter more than 4-6”</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Weathered rocks, marls, chalks, and firmly cemented soils</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
</tr>
<tr>
<td>Slightly weathered to unweathered rock</td>
<td>Y</td>
<td>M</td>
<td>N</td>
</tr>
</tbody>
</table>

Source: Iseley et al. (1999).
Y = generally used; M = possible, but difficulties may occur; N = generally unsuitable.

The following shall be deemed “high-risk” trenchless applications by the Department, and shall be reviewed by the District Materials Engineer prior to application acceptance:

- Proposed pipe diameter (O.D.) 24” and greater; and
- Pipe cover less than three times (3 x D) the pipe diameter; and
- ADT greater than 25,000 vehicles per day (vpd); or
- Proposed pipe diameter (O.D.) 60” and Greater; or
- Any other situation where there is significant risk (as interpreted by the Department).

For Land Use Permit Applications, trenchless construction will be given a conditional approval, as long as the application addresses the criteria listed above, and the applicant’s contractor has the minimum required experience as detailed in the Special Provisions available at VDOT’s Construction Division.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-26 of 77
8.3.6.11.1 **Jack and Bore**

The Jack and Bore method includes the forming of a bore from the launching pit to a receiving pit, by means of a rotating cutting head, attached to the leading end of an auger string. Usually, a steel pipe that serves as a casing for carrier pipes, is installed in the process by jacking. As the boring operation proceeds, spoils are brought back to the launching pit for removal.

This method provides limited tracking and steering capability. With a steering head and water-level grade monitoring system, an accuracy of 1% of the length can be maintained in the vertical grade. Horizontal grade is generally not controlled and obstructions or boulders can cause large deflections.

8.3.6.11.2 **Microtunneling**

Microtunneling is similar to Jack and Bore, but includes remotely-controlled, laser-guided, steering head, known as a microtunnel boring machine (MTBM). An auger system can be used to remove the excavated soil, but more commonly a hydraulic system with slurry is used. The slurry aids in the drilling and counterbalancing groundwater and earth pressures.

Microtunneling is typically extremely accurate, with positional accuracy within 1 inch along the entire pipe run possible. Because of the level of accuracy, microtunneling is suitable for construction of large-diameter sewers and in congested subsurface environments with limited allowance for alignment deviations.

8.3.6.11.3 **Pipe Jacking**

Pipe jacking includes directly installing pipes behind a shield machine by hydraulic jacking from a drive shaft. In pipe jacking, personnel are usually required to enter the pipe to perform the excavation, whereby the excavation could be performed mechanically or manually. For the safety of those entering the workspace, a minimum pipe diameter of 42” is recommended.

For pipe jacking, it is recommended to have a minimum cover depth of 6’, or two times (2X) the O.D. of the pipe, whichever is greater. For slurry-installed pipe, it is recommended to have a minimum cover depth of 6’, or three times (3X) the O.D., whichever is greater.

Typical accuracies for pipe jacking include a tolerance of +/-3” for alignment, and +/-2” for grade.

RCP or steel casing pipe is normally employed in a pipe jacking operation. If steel casing pipe is used, a concrete (or occasionally metal or plastic) carrier pipe is installed inside of the steel pipe. The void between the two pipes is to be pressure grouted in accordance with Section 302.03 of the VDOT Road and Bridge Specifications.
In some specific circumstances, it has been deemed appropriate to install only the steel pipe to serve as the drainage pipe. THIS IS NOT TO BE CONSIDERED A UNIVERSALLY ACCEPTABLE PRACTICE.

The use of steel pipe as the actual drainage pipe must conform to Notes 1, 2 and 4 for Table A of “Allowable Types of Pipe” as shown in standard PC-1. Any deviation from this policy must go through the Design Waiver process, as per IIM-LD-227.

8.3.7 Counter Sinking and Low Flow Considerations

8.3.7.1 Definitions

8.3.7.1.1 Stream Bed

The stream bed is the substrate along the length of a stream, which lies below the ordinary high water elevation. The substrate may consist of organic matter, bedrock or inorganic particles that range in size from clay to boulders, or a combination of materials. Areas contiguous to the stream bed, but above the ordinary high water elevation, are not considered part of the stream bed.

8.3.7.1.2 Culvert

A culvert is generally defined as an enclosed structure that is used to convey surface waters from one side of an embankment to the other. For the purposes of this Manual there is no distinction between temporary and permanent culvert installations.

8.3.7.2 Policy

The District Environmental staff will determine if the culvert impacts a jurisdictional stream bed (US Army Corps of Engineers) and will notify the appropriate project authority and the Hydraulic Engineer when the below requirements must be incorporated into the design:

- Culverts constructed in jurisdictional stream beds are required to have the upstream and downstream inverts set (countersunk) below the natural stream bed elevation to stimulate natural stream bed establishment within the culvert and to meet the requirements of the environmental permitting process. The countersinking requirement does not apply to floodplain culverts or extensions or maintenance of existing structures where the existing structure will remain in service.

- When performing the hydraulic analysis for any culvert installation that is to be countersunk, the analysis shall either:
1) Consider the hydraulic opening as being that above the countersunk portion of the culvert, or

2) Determine the required hydraulic opening (size) based on no countersinking; then specify the next larger size structure (3” or 6” greater height as appropriate) with the additional opening installed below the steam bed.

- When performing a hydraulic analysis for any multiple barrel culvert crossing, it is appropriate to consider the natural channel and flood plain configuration as projecting through the crossing, the same as if it were a bridge spanning a flood plain. For the purpose of determining the hydraulic capacity of the crossing, any culvert area that is outside the natural channel area and below the flood plain elevation will be considered obstructed and, therefore, not available for hydraulic conveyance.

- Culverts will be adequately sized to allow for the passage of ordinary high water with the countersinking, invert and flood plain restrictions taken into account.

- If the culvert is greater than 24” (or equivalent) in diameter, or rise in the case of noncircular shapes, the inlet and outlet ends shall be countersunk a minimum of 6” below the natural stream bed. If the culvert is 24” (or equivalent) or less in diameter, or rise in the case of noncircular shapes, the inlet and outlet ends shall be countersunk a minimum of 3” below the natural stream bed.

8.3.7.3 Multiple Barrel Culverts

When multiple barrel culverts are used, the 6” countersink requirement may only be needed for one barrel. The Hydraulic Engineer should determine whether it is appropriate and/or feasible to countersink one barrel or all of the barrels considering the following:

- The width of the culvert barrel(s) receiving the low flow should be approximately the width of the normal stream to avoid accelerating velocities (at normal flow) through the culvert.

- Narrow and constructed floodplains may necessitate all barrels being at the lowest possible elevation. Wide floodplains with significant over bank areas may permit one barrel to be countersunk and the remaining barrels to be either at the floodplain elevation or at an elevation slightly higher than the natural stream bed.

- Pipe Culverts may be designed to have barrels at different invert elevations. However, special provisions are needed to ensure proper bedding and backfill. Special Design Endwalls will be required. These considerations may negate any potential cost savings associated with not countersinking all barrels a like amount.
• Precast box culverts may be designed to have barrels at different invert elevations. In doing so, the installation is usually configured with the top of all barrels at the same elevation. This will require the same special considerations for bedding, backfill and endwall design as noted in Section 3.1.3. Cast in place box culverts usually have all barrels of the same size and elevation in order to construct the box culvert using standard details.

• Multiple barrel culverts that are constructed with all barrels countersunk shall provide measures for directing the low flow through one or more barrels that approximate the width of the normal stream. (See Road and Bridge Standards EC-13).26F

• If the normal stream width is approximately equal to the total span of all barrels, low flow diversion measures normally should not be needed. If the Hydraulic Engineer elects not to utilize a low flow diversion structure, the District Environmental Manager shall be notified of the decision and be provided justification in order to advise the environmental review agencies during the permitting process

• When low flow diversion measures are needed, they shall be constructed to permit the stream to continue the natural meander or moving process normally associated with flood flows. The low flow diversion structures shall be constructed of rip rap, or other similar material. The rip rap material used should be small enough to allow movement during flood events (i.e., Class I Dry Rip Rap).

• Other methods of achieving the desired low flow conditions may also be employed. These shall be reviewed and approved by the District Environmental Manager.

8.3.7.4 Special Culvert Installations

8.3.7.4.1 Culverts on Bedrock

If the bedrock prevents countersinking, evaluate the use of a three-sided structure to cross the waterway or evaluate alternative locations for the new culvert that will allow for countersinking. If none of these alternative measures are practicable, the Hydraulic Engineer shall submit documentation to the District Environmental Manager, including the cost, engineering factors, and site conditions that prohibit countersinking the culvert, and shall coordinate the evaluation of options to minimize disruption of the movement of aquatic life. Options that must be considered include partial countersinking (such as less than 3" of countersinking, or countersinking of only one end of the culvert), constructing stone step pools and low rock weirs downstream of the culvert, or other measures that provide for the movement of aquatic life.

NOTE: Blasting of bedrock stream bottoms through the use of explosives is not acceptable as a means of providing for countersinking of pipes on bedrock.

Due to the magnitude of the changes to this section, shading has been omitted.
Chapter 8-30 of 77
8.3.7.4.2 Culverts on Steep Terrain

Culverts on steep terrain (slope of 5% or greater) may generate flow velocities that cause excessive scour at the outlet and may prevent the establishment of a natural bed of material through the culvert. Should this situation present itself, the Hydraulic Engineer shall coordinate the evaluation of alternatives to countersinking. These include partial countersinking of the inlet end and implementation of measures to minimize any disruption of the movement of aquatic life, constructing a stone step/pool structure, using river rock/native stone rather than riprap or constructing low rock weirs to create a pool or pools. Stone structures should be designed with sufficient-sized stone to prevent erosion or washout and should include keying-in as appropriate. These structures should be designed both to allow for aquatic life passage and to minimize scour at the outlet. The Hydraulic Engineer shall submit documentation to the District Environmental Manager, including the cost, engineering factors, and site conditions that prohibit countersinking the culvert, and shall coordinate the evaluation of options to minimize disruption of the movement of aquatic life.

8.3.7.4.3 Culverts at the Confluence of Two Streams

The outlet end of culverts that discharge a tributary directly into another stream must be countersunk below the natural stream bed at the discharge point. If this measure is not practicable, the Hydraulic Engineer shall submit documentation to the District Environmental Manager, including the cost, engineering factors, and site conditions that prohibit countersinking the culvert, and shall coordinate the evaluation of options to minimize disruption of the movement of aquatic life.

8.3.7.4.4 Other Situations

Other unusual circumstances that prohibit countersinking shall be evaluated on a case-by-case basis. The Hydraulic Engineer shall submit documentation to the District Environmental Manager, including the cost, engineering factors, and site conditions that prohibit countersinking the culvert, and shall coordinate the evaluation of options to minimize disruption of the movement of aquatic life.

Proposed culverts that do not include countersinking are subject to environmental agency review and approval and may require additional documentation or evaluation of other alternative measures.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-31 of 77
8.3.8 Drainage Design at Railroads

On VDOT projects, where there is a need to install a culvert or a storm sewer pipe within railroad right of way, either under or adjacent to the tracks, the Hydraulic Engineer should contact the Department of Rail and Public Transportation to determine the specific design and construction criteria required by the Railroad Company and to initiate the process for obtaining any approvals needed from the Railroad Company. Railroad Companies generally follow engineering practices recommended by the American Railway Engineering and Maintenance-of-Way Association (AREMA) in their Manual of Recommended Practices for Railway Engineering, Volume I, Chapters 4 & 5. Railroad Companies reserve the authority to adopt and use more stringent design requirements, as they deem necessary. Some of the basic criteria for culverts and storm sewers that are to be located on railroad right of way are presented in this memorandum.

Projects that have railroad involvement generally are not advertised for construction until the Rail/Highway Agreement is fully executed. The execution of the Agreement by the Railroad Company is contingent upon their review and acceptance of the project design, especially the drainage design, as it relates to or affects their facilities. It is important that the Railroad Company be provided a complete and current set of plans and drainage computations for their review. The plan review and comment period by the Railroad Company can typically take three months or more for each submittal. Many projects take two or more reviews to address comments or correct plan omissions or errors. The time needed for review and coordination with the Railroad Company should be taken into consideration when establishing project schedules.

8.3.8.1 Criteria

8.3.8.1.1 Hydraulic Design Criteria

Culvert design follows the same FHWA methods used for VDOT highway projects with the following minimum criteria:

- The 25-year discharge shall produce a headwater elevation at the culvert entrance no greater than the top of the pipe (HW/D = 1.0).
- The 100-year discharge shall produce a headwater elevation at the culvert entrance no greater than 1.5 times the height of the culvert (HW/D = 1.5) or 2.0' below the elevation of the bottom of the rail, whichever is less.

Where field conditions do not permit installation of pipes sizes meeting this criterion, “pre and post construction” computations must be provided showing the headwater elevations for the 25-year and 100-year floods and demonstrating that there will be no increase in headwater depth due to the proposed construction. The Engineering Department of the Railroad Company must approve such designs.
8.3.8.1.2 Pipe Size and Cover

The minimum pipe size for use under the track is 36” diameter. A smaller size pipe may be allowed with the approval of the engineering department of the railroad.

The maximum pipe size for use under the track is 72” diameter. A larger size pipe may be allowed with the approval of the engineering department of the railroad.

The minimum pipe cover is to be 5.5’ as measured from the outside top of the pipe (casing pipe if used) to the bottom of the rail. Since survey crews often obtain the elevation of the top of the rail, an assumed rail height of 7 ½” may be used in determining the elevation of the bottom of the rail. Cover may also be determined by using the top of the cross tie elevation if the top of the rail elevation is unknown. In locations where the minimum cover cannot be obtained, a request must be made to the Railroad Company for an exception, with a complete explanation of the need for the exception.

8.3.8.1.3 Pipe Materials and Installation

Pipes to be installed under existing tracks will generally require the bore and jack or tunneling method of installation and must be so noted on the construction plans. An exception to this may be granted by the Railroad Company for spur tracks or tracks with infrequent use. Special circumstances, such as minimum cover, or other restrictions may sometimes necessitate that a pipe or box culvert be installed by the open cut method. These sites should be carefully reviewed by VDOT, the Department of Rail and Public Transportation and the Railroad Company to decide the appropriate methods and materials to be specified in the construction plans.

SMOOTH WALL STEEL PIPE

The Railroad Company’s standard pipe material for the bore and jack installation method is smooth wall steel pipe capable of supporting the Cooper E-80 loading. A structural analysis that is consistent with the Cooper E-80 loading requirements must be available for the Railroad Company’s review and approval should they desire. Section 105 of the Road and Bridge Specifications outlines the procedures that should be followed for this process.

The smooth wall steel pipe may function as the carrier pipe (i.e., used to convey the stormwater run-off) or function as a casing pipe for the actual carrier pipe. If installed as the carrier pipe, the smooth wall steel pipe must conform to the criteria set forth in the appropriate notes for uncoated galvanized steel pipe shown in Table A & A1 of the “Allowable Pipe Criteria for Culverts and Storm Sewers” in Standard PC-1 of the Road and Bridge Standards. The State Location and Design Engineer and the District Materials Engineer must approve any deviation from the noted criteria.

The drainage description for smooth wall steel pipes installed under the railroad by the bore and jack method should specify:

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-33 of 77
Jacked Smooth Wall Steel Pipe Req’d.

Pipe shall be designed to support Cooper E-80 loading in accordance with Section 105 of the Road and Bridge Specifications and installed by the bore and jack method. Smooth wall steel pipe shall have a minimum wall thickness of (See Table A).

<table>
<thead>
<tr>
<th>Pipe Size Inches</th>
<th>Minimum Wall Thickness Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.500</td>
</tr>
<tr>
<td>30</td>
<td>0.500</td>
</tr>
<tr>
<td>36</td>
<td>0.500</td>
</tr>
<tr>
<td>42</td>
<td>0.625</td>
</tr>
<tr>
<td>48</td>
<td>0.625</td>
</tr>
<tr>
<td>54</td>
<td>0.750</td>
</tr>
<tr>
<td>60</td>
<td>0.875</td>
</tr>
<tr>
<td>66</td>
<td>0.875</td>
</tr>
<tr>
<td>72</td>
<td>1.000</td>
</tr>
</tbody>
</table>

CONCRETE PIPE
Under certain conditions, CSX Transportation, Inc. will allow concrete pipe Class V to be installed beneath the tracks without a casing pipe. In these cases, Class V concrete pipe may be used up to a cover height of 14’. For cover heights greater than 14’, a Special Design Concrete Pipe must be used. A structural analysis that is consistent with the Cooper E-80 loading requirements must be provided to the Railroad Company for their review and approval. Section 105 of the Road and Bridge Specifications outlines the procedures that should be followed for this process. The drainage description for such pipes should specify:

For cover heights 14’ or less:
Jacked Concrete Pipe Req’d. Class V
Pipe shall be installed by the bore and jack method.

For cover heights greater than 14’:
Special Design Jacked Concrete Pipe Req’d.
Pipe shall be designed to support Cooper E-80 loading in accordance with Section 105 of the Road and Bridge Specifications and installed by the bore and jack method.

The note referencing the Cooper E-80 loading and Section 105 of the Road and Bridge Specifications should also be included on the appropriate Drainage Summary Sheet.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-34 of 77
CORRUGATED STEEL PIPE
For pipes to be installed under proposed or relocated tracks to be constructed on a new location, the open cut method of installation should be used. The pipe material generally accepted by the Railroad Company for this type of installation is corrugated steel capable of supporting the Cooper E-80 loading requirements. Aluminized Type 2 or Polymer Coated are the standard types of corrugated steel pipe allowed by VDOT. A structural analysis that is consistent with the Cooper E-80 loading requirements must be available for the Railroad Company’s review and approval should they desire. Section 105 of the Road and Bridge Specifications outlines the procedures that should be followed for this process. The drainage description for such pipes should specify:

Corrugated Steel Pipe Req’d.

Pipe shall be designed to support Cooper E-80 loading in accordance with Section 105 of the Road and Bridge Specifications.

The note referencing the Cooper E-80 loading and Section 105 of the Road and Bridge Specifications should also be included on the appropriate Drainage Summary Sheet. For locations where VDOT does not normally allow corrugated steel pipe (see Allowable Pipe Type Tables in Standard PC-1 of the Road and Bridge Standards), concern should be expressed to the Railroad Company about the use of this type of pipe material. Railroad Companies generally require that VDOT own and maintain any drainage structures that VDOT installs on railroad right of way. Therefore, we should endeavor to use the type of material that has proven to provide an appropriate life expectancy for specific site conditions. However, the Railroad Company will have final approval on the type of material and the installation method.

8.3.8.1.4 Drop Inlets
Drop inlets should generally not be located on the railroad right of way. When determined necessary to locate drop inlets on railroad right of way, they should be located no closer than 18’ from the track centerline. Railroads have a responsibility to their employees and customers to provide a hazard free operating corridor and are concerned with the hazard potential presented by grate inlets, especially those located in ditches. Any grate inlet that must be located within 18’ from the track centerline, or in an area where there is concern with a hazard potential due to grate openings, should have the bar spacing of the grates specified as would be required for pedestrian accessible areas. Where a Standard DI-5 or DI-7 inlet is proposed in these areas, a Type III grate shall be specified.

8.3.8.1.5 Ditches
Drainage ditches on railroad right of way that will convey VDOT roadway or bridge deck run off must be analyzed for the effects of the 100-year frequency discharge. This does not necessarily mean that the ditch must contain the 100-year flood but rather the effects of the 100-year flood must be documented. The analysis must be submitted to the Engineering Department of the Railroad Company for their review and approval. The analysis should present a factual scenario that is clear and easily understood.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-35 of 77
A computer printout that is not clearly presented or explained is not usually acceptable to the Railroad Company.

8.3.8.1.6 Foundations for Signals
The location of proposed drainage structures may conflict with the foundations of proposed Railroad Company installed warning devices at rail crossings. The location of the warning device is prescribed by federal regulations and varies according to the typical section of the roadway and the alignment of the rail crossing. The location of proposed drainage structures in these areas should be reviewed with the Department of Rail and Public Transportation to determine any possible conflicts.

8.3.8.1.7 Endwalls and Other Structures
For construction detail requirements when placing pipe endwalls, manholes and other such structures adjacent to railroads, see Section 2E-24 of the VDOT Road Design Manual.

8.3.8.2 Guidelines

The following general guidelines are presented to assist the Drainage Designer in developing a design that is acceptable to the Railroad Company. These guidelines are representative of the comments received from Railroad Companies on past VDOT projects:

- For projects that are rebuilding an existing crossing, the existing drainage patterns should not be altered and documentation (a narrative with hydrologic and hydraulic computations) should be provided to the Railroad Company that indicates no increase in volume, velocity or flow depth/depthwater depth is caused by the project on railroad right of way.

- Railroad Companies do not generally allow new drainage outfalls to discharge onto railroad right of way. Any existing outfall that is to be replaced or altered should be acceptable provided the documentation as previously noted for volume, velocity and flow depth/headwater depth is provided to the Railroad Company.

- When a constructed outfall (ditch or pipe) must be directed into a railroad ditch paralleling the rail bed, the constructed ditch or pipe should intersect the railroad ditch at an angle, in lieu of perpendicular, in order to lessen concerns with potential erosion. The appropriate erosion control measures should be applied at the intersection point to ensure stability of the rail bed and the existing railroad ditch.

- Proposed storm drain pipes paralleling the railroad tracks are not generally permitted to occupy the railroad right of way.

- Proposed roadway culverts and storm drains are not generally permitted to connect to existing railroad culverts. For situations where such a connection is unavoidable, the Railroad Company usually requires that VDOT assume maintenance responsibility for the railroad culvert.
• Scuppers, deck drains, drop inlets or other concentrated flow outlets from bridge decks are generally not allowed to drain directly onto the railroad right of way.
• Primary and emergency spillways and outfall structures of stormwater management basins, as well as the basin itself, are generally not allowed to be located on the railroad right of way. Where flow from a stormwater management basin is directed onto railroad right of way, documentation should be provided to the Railroad Company that indicates no increase in volume, velocity or flow depth/headwater depth is caused by the project on railroad right of way.

8.4 Design Concepts

8.4.1 General

The design of a culvert system for a highway crossing should consider: roadway requirements, planning and location, hydrology, ditches and channels, and erosion and sediment control. Each of these chapters should be consulted as appropriate. The discussion in this section is focused on alternative analyses and design methods.

For economy and hydraulic efficiency, culverts should be designed to operate with the inlet submerged during design flood flows. At many sites, either a bridge or a culvert will fulfill the structural and hydraulic requirements; therefore, the structure choice should be based on construction and maintenance costs, risk of failure, risk of property damage, traffic safety, and environmental considerations.

8.4.2 Design Methods

The designer should choose whether to use hand methods (nomographs or equations) or computer software solutions, such as FHWA's HY8.

The FHWA's Hydraulic Design Series No. 5, "Hydraulic Design of Highway Culverts," is the primary reference on culvert design.

8.4.2.1 Hydrologic Methods

Hydrologic methods are either steady state (constant discharge over time) or unsteady (flow varies with time, as in a hydrograph). See Chapter 6 for recommended methods.

The constant discharge method:

• Is the typical method used for most culvert designs
• Is usually assumed to be the peak discharge
• Will yield a conservatively sized structure where temporary storage is available but is not considered
8.4.2.2 Computational Methods

Computational methods include manual methods (Appendix 8B-1) and computer solutions. Manual methods usually employ design nomographs, provided in Appendix 8C. However, the design equations may also be applied. Computer solutions are usually employed for larger installations; however, they can be used for all situations.

8.4.2.2.1 Manual Methods

Manual methods using design equations and nomographs through (Appendix 8B-1):
- Require a trial and error solution that is straightforward and easy using design nomographs
- Provide reliable designs for many applications
- Require additional computations for tailwater, outlet velocity, hydrographs, routing and roadway overtopping
- Nomographs for a variety of barrel shapes are included in Appendix 8C

8.4.2.2.2 Computer Solution

One example of culvert analysis software is HY8, FHWA’s Culvert Analysis Microcomputer Program, which:
- Is an interactive program
- Uses the theoretical basis for the nomographs
- Can compute tailwater, improved inlets, road overtopping, hydrographs, routing and multiple independent barrels, and irregular shaped conduits
- Calculates backwater profiles in the culvert barrel(s)
- Develops and plots tailwater rating curves
- Develops and plots performance curves
8.4.3 Culvert Hydraulics

An exact theoretical analysis of culvert flow is extremely complex because the following are required:

- Analysis of non-uniform flow with regions of both gradually varying and rapidly varying flow
- Determination of how the flow type changes as the flow rate and tailwater elevations change
- Application of backwater and drawdown calculations and energy and momentum balances
- Incorporation of the results of hydraulic model studies
- Determination of whether hydraulic jumps occur and whether they are inside or downstream of the culvert barrel
- Analysis of flows under subatmospheric pressure in the culvert barrel

The design procedures described in this chapter incorporate the following concepts:

8.4.3.1 Control Section

- The control section is the location where there is a unique relationship between the flow rate and the upstream water surface elevation
- The control section may be located at or near the culvert inlet (inlet control) or the culvert outlet (outlet control)
- Inlet control is governed by the inlet geometry
- Outlet control is governed by the culvert inlet geometry, as well as the barrel characteristics, and tailwater elevation(s)
- Tailwater control may be located downstream of the culvert

8.4.3.2 Minimum Performance

Minimum performance is determined by analyzing both inlet and outlet control and using the highest resultant headwater. The culvert may operate more efficiently than minimum performance at times (more flow for a given headwater level), but it will not operate at a lower performance level than the one calculated using this concept.

8.4.3.3 Inlet Control

For inlet control, the control section is at, or near, the upstream end of the barrel (the inlet). The flow passes through critical depth near the inlet and becomes shallow, high velocity (supercritical) flow in the culvert barrel. Depending on the tailwater elevation, a hydraulic jump may occur downstream of the inlet.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-39 of 77
8.4.3.3.1 Headwater Factors - Inlet Control

The following factors are considered when calculating the inlet control headwater.

- **Headwater depth** is measured from the inlet invert of the inlet control section to the surface of the upstream pool.
- **Inlet area** is the cross-sectional area of the face of the culvert. The inlet face area is the same as the barrel area, except for tapered improved inlets.
- **Inlet edge** configuration describes the entrance geometry. Some typical inlet edge configurations are thin edge projecting, mitered, square edges in a headwall, and beveled edge.
- **Inlet shape** is usually the same as the shape of the culvert barrel except for some improved inlets. Typical shapes are rectangular, circular, elliptical, and arch. Carefully check for additional control sections for special culvert designs.

8.4.3.3.2 Flow Conditions – Inlet Control

Three regions of inlet control flow are shown in Figure 8-1. They are unsubmerged, transition, and submerged. Generally, as the flow rate increases, inlet control flow passes through an unsubmerged condition (water surface below the crown of the control section), transition (between partly full and full flow), and submerged (water surface above the crown of the control section). The transition region is poorly defined and tends to be unstable. Its curve is usually drawn tangent to the unsubmerged and submerged performance curves.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-40 of 77
Figure 8-1. Performance Curves - Unsubmerged, Transition, and Submerged
Four types of inlet control flow profiles within culverts are shown in Figure 8-2.

Figure 8-2. Types of Inlet Control Flow

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-42 of 77
8.4.3.3.2.1 **Unsubmerged - Inlet Control**
For headwaters below the inlet crown, the entrance operates as a weir, as shown in Figure 8-2, diagrams A and B. As shown, the outlet of the culvert may be unsubmerged or submerged.
- A weir is a flow control section where the upstream water surface elevation can be predicted for a given flow rate
- The relationship between flow and water surface elevation must be determined by model tests of the weir geometry or by measuring prototype discharges
- Such tests are then used to develop equations. Appendix A of HDS-5 contains the equations, which were developed from model test data.

8.4.3.3.2.2 **Submerged - Inlet Control**
For headwaters above the inlet crown, the culvert operates as an orifice as shown in Figure 8-2, diagram C.
- An orifice is a submerged opening flowing freely on the downstream side, which functions as a control section
- The relationship between flow and headwater can be defined based on results from model tests. Appendix A of HDS-5 contains flow equations, which were developed from model test data.

8.4.3.3.2.3 **Transition Zone - Inlet Control**
The transition zone is located between the unsubmerged and the submerged flow conditions where the relationship between flow and headwater depth is poorly defined. This zone is approximated by plotting the unsubmerged and submerged flow equations and connecting them with a line tangent to both curves.

8.4.3.3.2.4 **Special Condition - Inlet Control**
Figure 8-2, diagram D illustrates a special case of inlet control, where both the entrance and the outlet are submerged. To maintain this condition, a source of air must be supplied to the barrel; otherwise the barrel will tend to surge and alternate between full flow and partly full flow.

8.4.3.3.2.5 **Inlet Control Nomographs**
The inlet control flow versus headwater curves, which are established using the above procedure, are the basis for constructing the inlet control design nomographs in Appendix 8C. Note that in the inlet control nomographs, headwater (HW) is measured from the inlet invert to the total upstream energy grade line, including the approach velocity head.

8.4.3.4 **Outlet Control**
Culverts operating in outlet control have subcritical or full flow in their barrels. The control of the flow is at the downstream end of the culvert (the outlet) or further downstream.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-43 of 77
The tailwater depth is assumed to be a function of either critical depth at the culvert outlet or the downstream channel depth, whichever is higher. In outlet control, the type of flow is dependent on the entire culvert, including the inlet configuration, the barrel, and the tailwater.

Five types of outlet control flow profiles within culverts are depicted in Figure 8-3. Note that both the inlet crown and the outlet crown may be submerged or unsubmerged.
Figure 8-3; diagram A represents full flow throughout the culvert barrel. Both the entrance and the outlet are submerged.

Figure 8-3; diagram B shows the barrel inlet flowing partly full, but the rest of the barrel under full flow. The entrance is unsubmerged due to the inlet contraction, and the outlet is submerged.

Figure 8-3, diagram C represents full flow in the culvert barrel. The entrance is submerged and the outlet is unsubmerged.

Figure 8-3, diagram D represents full flow in the upper section of the barrel and partly full flow (subcritical) in the lower section of the barrel. The entrance is submerged and the outlet is unsubmerged.

Figure 8-3, diagram E depicts partly full flow (subcritical) over the length of the barrel. Both the entrance and the outlet are unsubmerged.

8.4.3.4.1 Headwater Factors - Outlet Control

The following factors are considered when calculating the headwater from outlet control.

- Barrel Roughness is a function of the barrel material and geometry. Typical materials include concrete and corrugated metal. The roughness is represented by a hydraulic resistance coefficient such as Manning’s n-value. Typical Manning's n-values are presented in Appendix 8D-1
- Barrel Area is the full flow cross-section measured perpendicular to the flow
- Barrel Length is the total culvert length from the entrance crown to the exit crown of the culvert. Because the design height of the barrel and the embankment slope influence the actual length, an approximation of barrel length is usually necessary to begin the design process
- Barrel Slope is the actual slope of the culvert barrel, and is often the same as the natural stream slope. However, when the culvert inlet or outlet is raised or lowered, the barrel slope is different from the stream slope
- Tailwater Elevation is based on the downstream water surface elevation. Backwater calculations from a downstream control, single section approximation, downstream lake levels, tidal elevations, or field observations are used to define the tailwater elevation. Tailwater elevations are normally calculated for different flood frequencies
8.4.3.4.2 Flow Condition - Outlet Control

Full flow in the culvert barrel is assumed for the analysis of outlet control hydraulics. Outlet control flow conditions can be calculated based on an energy balance from the tailwater pool to the headwater pool. The outlet control headwater can be computed using the following equations:

8.4.3.4.2.1 Losses
The total headloss through the culvert is defined by Equation 8.1.

\[H_L = H_e + H_f + H_o + H_b + H_j + H_g + H_v \]
(8.1)

Where:
- \(H_L \) = Total energy loss, ft.
- \(H_e \) = Entrance loss, ft.
- \(H_f \) = Friction losses, ft.
- \(H_o \) = Exit loss, ft. (equals velocity head if \(K_e = 1.0 \))
- \(H_b \) = Bend losses, ft. (see HDS-5)
- \(H_j \) = Losses at junctions, ft. (see HDS-5)
- \(H_g \) = Losses at grates, ft. (see HDS-5)
- \(H_v \) = Velocity head, ft.

8.4.3.4.2.2 Velocity
Velocity is computed using the continuity equation.

\[V = \frac{Q}{A} \]
(8.2)

Where:
- \(V \) = Average full barrel velocity, fps
- \(Q \) = Flow rate, cfs
- \(A \) = Cross sectional area of flow with the barrel full, ft\(^2\)

8.4.3.4.2.3 Velocity Head
The velocity head represents the kinetic energy of full flow in the culvert barrel. It is used in calculating the losses in the culvert (inlet, barrel, outlet, etc.).

\[H_v = \frac{V^2}{2g} \]
(8.3)

Where:
- \(H_v \) = Velocity Head, ft.
- \(V \) = Average full barrel velocity, fps
- \(g \) = Acceleration due to gravity, 32.2 ft./s\(^2\)
8.4.3.4.2.4 Entrance Loss
The losses at the culvert entrance are a function of the velocity head. The more efficient the inlet, the lower the K_e value.

$$H_e = K_e \left(\frac{V^2}{2g} \right)$$ \hspace{1cm} (8.4a)

Where:

$H_e =$ Entrance head loss, ft.
$K_e =$ Entrance loss coefficient, see Appendix 8D-2

8.4.3.4.2.5 Friction Loss
Friction loss in the culvert barrel is due to wall friction. It is a function of barrel roughness, size, shape, and velocity head, and is calculated using Manning's Equation.

$$H_f = \frac{29n^2L}{R^{1.33}} \left(\frac{V^2}{2g} \right)$$ \hspace{1cm} (8.4b)

Where:

$n =$ Manning's roughness coefficient, see Appendix 8D-1
$L =$ Length of the culvert barrel, ft.
$R =$ Hydraulic radius of the full culvert barrel $= \frac{A}{P}$, ft
$A =$ Cross section area of pipe, ft2
$P =$ Wetted perimeter of the barrel, ft.

8.4.3.4.2.6 Exit Loss
The exit loss is a function of the velocity head in the barrel and the velocity head in the downstream channel. The latter is often neglected.

$$H_o = 1.0 \left(\frac{V^2}{2g} - \frac{V_d^2}{2g} \right)$$ \hspace{1cm} (8.4c)

Where:

$V_d =$ Channel velocity downstream of the culvert, fps (if downstream velocity is neglected, use Equation 8.4d).

$$H_o = H_v \left(\frac{V^2}{2g} \right)$$ \hspace{1cm} (8.4d)

8.4.3.4.2.7 Other Losses
Other possible losses in the culvert include junctions, bends, grates, etc. If present, these losses are functions of the velocity head multiplied by a loss coefficient. The loss coefficients are found in HDS-5.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-47 of 77
8.4.3.4.2.8 **Barrel Losses**
The various culvert losses are totaled to obtain the total headloss in the barrel. Losses for bends, junctions, grates, etc., should be added to Equation 8.5.

\[
H = H_E + H_o + H_f
\]

\[
H = \left[1 + K_e + \left(\frac{29n^2L}{R^{1.33}}\right)\right] \left(\frac{V^2}{2g}\right)
\]
(8.5)

8.4.3.4.2.9 **Energy Grade Line - Outlet Control**
The energy grade line represents the total energy at any point along the culvert barrel. Equating the total energy at sections 1 and 2, upstream and downstream of the culvert barrel in Figure 8-4, the following relationship results:

\[
HW_o + \frac{V_u^2}{2g} = TW + \frac{V_d^2}{2g} + H_L
\]
(8.6)

Where:

- \(HW_o\) = Headwater depth above the outlet invert, ft.
- \(V_u\) = Approach velocity, fps
- \(TW\) = Tailwater depth above the outlet invert, ft.
- \(V_d\) = Downstream velocity, fps
- \(H_L\) = Sum of all losses (Equation 8.1)

![Figure 8-4. Full Flow Energy and Hydraulic Grade Lines](image)
8.4.3.4.2.10 Hydraulic Grade Line - Outlet Control

The hydraulic grade line is the depth to which water would rise in vertical tubes connected to the sides of the culvert barrel. In full flow, the energy grade line and the hydraulic grade line are straight, parallel lines separated by the velocity head except at the inlet and the outlet.

Figure 8-5. Outlet Control Energy and Hydraulic Grade Lines

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-49 of 77
8.4.3.4.2.11 Outlet Control Nomographs (Full-flow)
The outlet control nomographs were developed assuming that the culvert barrel is:

- Flowing full (See Figure 8-5, diagrams A and B)
- \(d_c \geq D \), (See Figure 8-5, diagram C)
- \(V_u \) is small and its velocity head can be considered to be a part of the available headwater (HW) used to convey the flow through the culvert
- \(V_d \) is small and its velocity head can be neglected

For these conditions, Equation 8.6 becomes:

\[
HW = TW + H - S_o L
\]
(8.7)

Where

- \(HW \) = Depth from the inlet invert to the energy grade line, ft.
- \(H \) = Headloss read from the nomograph (Equation 8.5), ft.
- \(S_o \) = Slope of culvert barrel, ft./ft.
- \(L \) = Length of culvert barrel, ft.

8.4.3.4.2.12 Outlet Control (Partly Full-flow)
Equations 8.1 through 8.7 were developed for full barrel flow. The equations also apply to the flow situations which are effectively full flow conditions, if \(TW < d_c \) (Figure 8-5, diagrams C and D), backwater calculations may be required which begin at the downstream water surface and proceed upstream. If the depth intersects the top of the barrel (Figure 8-5, diagram D), the full flow hydraulic grade line extends from that point upstream to the culvert entrance.

8.4.3.4.2.13 Outlet Control Nomographs (Partly Full-flow) - Approximate Method
Based on numerous backwater calculations performed by the FHWA staff, it was found that the full flow hydraulic grade line, extended from the upstream end of the barrel to the outlet, pierces the plane of the culvert outlet at a point about one-half way between critical depth and the top of the barrel, or \((d_c+D)/2 \) above the outlet invert. \(TW \) based on the downstream channel depth should be used if it is higher than \((d_c+D)/2 \).

The following equation should be used for headwater (HW):

\[
HW = h_o + H - S_o L
\]
(8.8)

Where:

- \(h_o \) = The larger of \(TW \) or \(\left(\frac{d_c+D}{2} \right) \), ft

Adequate results are obtained down to about \(HW = 0.75D \). For lower headwaters, backwater calculations are required.

Due to the magnitude of the changes to this section, shading has been omitted.
8.4.3.5 Outlet Velocity

Culvert outlet velocities should be calculated to determine the need for erosion protection at the culvert exit. Culverts usually have outlet velocities that are higher than the natural stream velocities. These outlet velocities may require flow readjustment or energy dissipation to prevent downstream erosion. If outlet erosion protection is necessary, the flow depth and the Froude number may also be needed.

8.4.3.5.1 Inlet Control

The velocity is calculated using Equation 8.2 with the flow area (A) equal to the cross section of the flow prism at the culvert outlet. First, the outlet depth must be determined. Either of the following methods may be used.

- Calculate the water surface profile through the culvert. Begin the computation at d_c at the entrance and proceed downstream to the exit. Determine the depth and flow prism area at the exit.

- Assume normal depth and velocity in the culvert barrel. This approximation may be used since the water surface profile approaches normal depth if the culvert is long enough. This outlet velocity may be slightly higher than the actual velocity at the outlet. Normal depths may be obtained from design aids in Appendix 8C.

![Figure 8-6. Outlet Velocity - Inlet Control](image)

Due to the magnitude of the changes to this section, shading has been omitted.
8.4.3.5.2 Outlet Control

The cross sectional area of the flow is defined by the geometry of the outlet and either critical depth, tailwater (downstream channel) depth, or the height of the conduit.

- Critical depth is used when the tailwater is less than critical depth
- Tailwater depth is used when tailwater is greater than critical depth, but below the top of the barrel
- The total barrel area is used when the tailwater level exceeds the top of the barrel

![Outlet Control Diagram](image)

Figure 8-7. Outlet Velocity - Outlet Control

8.4.3.6 Roadway Overtopping

Roadway overtopping will begin when the culvert headwater rises to the elevation of the roadway. The overtopping will usually occur at the low point of a sag vertical curve on the roadway. The flow will be similar to flow over a broad crested weir. Flow coefficients for flow overtopping roadway embankments are found in the FHWA's HDS No. 1, Hydraulics of Bridge Waterways. Curves for discharge coefficients are also included in Appendix 8C-60.

8.4.3.6.1 Length of Roadway Crest

The length of the roadway (weir) crest is difficult to determine when the crest is defined by a roadway sag vertical curve. It is recommended that the sag vertical curve be subdivided into a series of segments. The flow over each segment is then calculated for a given headwater. The flows for each segment are then added together to determine the total flow. Alternatively, the entire length can be represented by a single horizontal line (one segment). The length of the weir is the horizontal length of this segment. The depth is the average depth (area/length) of the upstream pool above the roadway. The computer program HY8 allows input of the actual road surface x and y coordinates.

Due to the magnitude of the changes to this section, shading has been omitted.
8.4.3.6.2 Total Flow

The flow over the roadway is calculated for a given upstream water surface elevation using Equation 8.9.

\[Q_r = C_d L (HW_r)^{1.5} \] (8.9)

Where:

- \(Q_r \) = Overtopping flow rate, cfs
- \(C_d \) = Overtopping discharge coefficient (weir coefficient) = \(k_t \) \(C_r \)
- \(k_t \) = Submergence coefficient
- \(C_r \) = Discharge coefficient
- \(L \) = Length of the roadway crest, ft.
- \(HW_r \) = Headwater depth, measured above the roadway crest, ft.

- Roadway overflow plus culvert flow must equal the total design flow
- A trial-and-error process is necessary to determine the flow passing through the culvert and the amount flowing across the roadway for various headwater elevations
- Performance curves for the culvert and the road overflow may be summed to yield an overall performance curve

Computer programs such as HY8 are recommended for design when evaluating roadway overtopping.

8.4.3.6.3 Performance Curves

Performance curves are plots of flow rate versus headwater depth or water surface elevation. The culvert performance curve is made up of the controlling portions of the individual performance curves for each of the following control sections as shown in Figure 8-8:

![Figure 8-8. Overall Culvert Performance Curve](image)

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-53 of 77
Inlet control performance curve is developed using the inlet control nomographs in Appendix 8C.

Outlet control performance curve is developed using Equations 8.1 through 8.7, the outlet control nomographs in Appendix 8C, or backwater calculations.

Roadway overtopping performance curve is developed using Equation 8.9.

Overall performance curve is the sum of the flow through the culvert and the flow across the roadway and can be determined by performing the following steps:

Step 1. Select a range of flow rates and determine the corresponding headwater elevations for the culvert flow alone. These flow rates should fall above and below the design discharge and cover the entire flow range of interest. Both inlet and outlet control headwaters should be calculated.

Step 2. Combine the inlet and outlet control performance curves to define a single performance curve for the culvert.

Step 3. When the culvert headwater elevations exceed the roadway crest elevation, overtopping will occur. Calculate the upstream water surface depth above the roadway for each selected flow rate. Use these water surface depths and Equation 8.9 to calculate flow rates across the roadway.

Step 4. Add the culvert flow and the roadway overtopping flow at the corresponding headwater elevations to obtain the overall culvert performance curve, as shown in Figure 8-8.

8.4.4 Special Design Considerations

8.4.4.1 General

The following sections describe and discuss special culvert design considerations. References are provided for the detailed design methods.

8.4.4.2 Tapered Inlets

A tapered inlet is a flared culvert inlet with an enlarged face section and a hydraulically efficient throat section. A tapered inlet with additional depression at the upstream end also improves performance by increasing the head applied to the throat section.

- Tapered inlets are not recommended for use on short culverts or culverts flowing in outlet control because the simple beveled edge is of equal hydraulic benefit.
- Design criteria and methods have been developed for two basic tapered inlet designs: the side-tapered inlet and the slope-tapered inlet.
- Tapered inlet design charts from FHWA's HDS-5 for both rectangular box culverts and circular pipe culverts are included in Appendix 8C.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-54 of 77
Tapered inlets have several possible control sections including the face, the bend (for slope-tapered inlets), and the throat. The headwater depth for each control section is referenced to the invert of that section.

8.4.4.2.1 Side-Tapered Inlets

The side-tapered inlet has an enlarged face section with the transition to the culvert barrel accomplished by tapering the sidewalls (Figure 8-9). The face section is about the same height, as the barrel height and the inlet floor is an extension of the barrel floor. The inlet roof may slope upward slightly, provided that the face height does not exceed the barrel height by more than 10% (1.1D). The intersection of the tapered sidewalls and the barrel is defined as the throat section. There are two possible control sections, the face and the throat. HWₘ, shown in Figure 8-9, is the headwater depth measured from the face section invert and HWₜ is the headwater depth measured from the throat section invert. The throat of a side-tapered inlet is a very efficient control section. The flow contraction is nearly eliminated at the throat.

![Side-Tapered Inlet Diagram](image)

Figure 8-9. Side-Tapered Inlet

The side-tapered inlet throat should be designed to be the primary control section for the design range of flows and headwaters.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-55 of 77
8.4.4.2.2 Slope-Tapered Inlets

The slope-tapered inlet, like the side-tapered inlet, has an enlarged face section with tapered sidewalls meeting the culvert barrel walls at the throat section as shown in Figure 8-10). In addition, a vertical FALL is incorporated into the inlet between the face and throat sections. This FALL concentrates more head on the throat section. At the location where the steeper slope of the inlet intersects the flatter slope of the barrel, a third section, designated the bend section, is formed. Therefore, a slope-tapered inlet has three possible control sections, the face, the bend, and the throat.

![Figure 8-10. Slope-Tapered Inlet](image)

The slope-tapered inlet combines an efficient throat section with additional head exerted on the throat. The face section does not benefit from the FALL between the face and throat; therefore, the face sections of these inlets are larger than the face sections of equivalent depressed side-tapered inlets. The required face size can be reduced by the use of bevels or other favorable edge configurations. The slope-tapered inlet is the most complex inlet improvement recommended in this drainage manual.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-56 of 77
Construction difficulties are inherent, but the benefits in increased performance can be significant. With proper design, a slope-tapered inlet passes more flow at a given headwater elevation than any other configuration. Slope-tapered inlets can be applied to both box culverts and circular pipe culverts. The slope-tapered inlet throat should be the primary control section in a slope-tapered inlet design.

HDS-5, Hydraulic Design of Highway Culverts, contains complete design methodology and design charts and forms for culverts with improved inlets. Most of the design charts have been included in Appendix 8C.

8.4.4.3 Buoyancy Protection
The buoyancy of a pipeline depends upon the weight of the pipe, the weight of the volume of water displaced by the pipe, the weight of the liquid load carried by the pipe and the weight of the backfill over the pipe. Lighter weight pipe materials are generally more susceptible to uplift forces than heavier materials.

If the summation of the weight of the pipe, weight of the water in the pipe (based on normal depth) and the weight of the fill over the pipe is less than the hydrostatic uplift (buoyant) forces acting upon the pipe, additional weight must be added to the pipe in order to stabilize it for the design conditions. The normal depth for determining buoyancy protection should be either the Q_{100} headwater depth or the depth of overtopping, whichever is less.

A concrete endwall will usually provide sufficient weight to counteract potential buoyant forces. However, in low fill situations it is usually more desirable and economical to use end sections in lieu of endwalls or, in the case of secondary roadways, pipes are often installed projecting beyond the embankment slopes with no end treatment. In these situations, a concrete anchor block (counterweight) must be designed for each installation where it is determined that flotation may be a potential problem. See Figure 8-17.

In Section 8.5.3, a procedure is outlined (with example) showing how to analyze a pipe installation for flotation potential and, where it is determined that there is a potential problem, how to determine the amount of counterweight needed.

8.4.4.4 Minor Structure Excavation
Quantities for minor structure excavation will be computed for pipes and box culverts with a diameter or span of 48” and larger. For multiple pipe installations, the span is measured between the interiors of the outside walls of the outer most pipes and is measured along a line perpendicular to the barrel of the pipe. Minor structure excavation will be computed to a point 18” outside the periphery of the barrel section, or to a point bound by vertical planes coincident with the bedding limits shown on the Standard PB-1 drawings.
The minor structure excavation quantity for wingwalls and other appurtenances will be based on the “ratio” of the plan area of the wingwalls or appurtenances to the plan area of the barrel.

For single line culverts, the width of the barrel will be the nominal span or opening of the pipe or box culvert; for multiple spans, the barrel width will be the overall distance between inner faces of the outermost barrel openings. This dimension is defined by the S+2D value noted on the standard drawings for endwalls for multiple barrel culverts in the Road and Bridge Standards. The length of all culverts will be from end to end of the culvert. The outside wall thickness and the 18” outside the neatlines of the periphery of the culvert are not to be included in computing the “ratio.”

Once the “ratio” has been determined, it is used to compute the total cubic yards of Minor Structure Excavation for the structure and appurtenances, by using the excavation quantity for the barrel section and increasing this quantity by the “ratio.”

The sketch below denotes the area to compute the typical plan area for determination of box culvert “ratio.” For computation of “ratio” for pipes see Appendix D, Table D-28 through D-31 in the Road Design Manual.

Where End Sections are required and the pipe option of metal or concrete is allowed, use the area of the ES-2 (metal) end section for computing the “ratio.”

Where there is not sufficient survey data to accurately determine minor structure excavation quantities, additional survey must be secured and incorporated before making final quantity determinations.

Minor Structure Excavation will be measured in cubic yards and paid for on a Plan Quantity basis.

Excavation for wingwalls and other appurtenances will be based on the “ratio” of the plan area of the wingwalls or appurtenances to the plan area of the barrel.

A separate entry is to be shown on the Drainage Summary Sheet for cubic yards of Minor Structure Excavation for Pipes and cubic yards of Minor Structure Excavation for Box Culverts.
Figure 8-10(a) Typical Box Culvert

Due to the magnitude of the changes to this section, shading has been omitted.
8.5 **Design Procedures and Examples**

8.5.1 **Documentation Requirements**

The results of the detailed analysis shall be incorporated into the Design Hydraulic Report as documented in Chapter 17 and shall include:

- Existing and Proposed Culvert Information: Inverts, Material, Size, Length, n-value and entrance condition and loss coefficient
- Tailwater Source and data
- Allowable HW/D design headwater elevation and basis for its selection
- Design Storm elevation HW/D and clearance to low shoulder
- Culvert outlet appurtenances and energy dissipation calculations and designs, including riprap proposed as needed for culvert outlet protection.

Sample Documentation provided in Chapter 17 Appendix.

8.5.2 **VDOT Culvert Design Procedure**

The following design procedure provides a convenient and organized method for designing culverts for a constant discharge, considering inlet and outlet control. The procedure does not address the effect of storage, which is discussed in Chapter 11, Stormwater Management.

- The designer should be familiar with all of the equations in Section 8.4 before using these procedures
- Following the design method without an understanding of culvert hydraulics can result in an inadequate, unsafe, or overly costly structure
- The culvert calculation form has been provided in Appendix 8B-1 to guide the user. It contains blocks for the project description, designer's identification, hydrologic data, culvert dimensions and elevations, roadway controls and property elevations, trial culvert description, inlet and outlet control HW, culvert barrel selected, and comments.

Step 1 Assemble site data and project file

a. The minimum site data are:

- USGS, site and location map
- Embankment cross section
- Roadway profile
- Photographs
- Field visit (sediment, debris)
- Design data at nearby structures
- Existing utilities

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-60 of 77
b. Studies by other agencies including:
 - Small dams — NRCS, USCOE, TVA, BLM
 - Canals — NRCS, USCOE, TVA, USBR
 - Floodplain — NRCS, USCOE, TVA, FEMA, USGS, NOAA
 - Storm drain - local or private

c. Environmental constraints including:
 - Commitments contained in review documents
 - Commitments contained in permits or permit applications
 - Fish migration
 - Wildlife passage
 - Wetlands resources

d. Design criteria:
 - Review Section 8.3 for applicable criteria
 - Prepare risk assessment or analysis, if needed

Step 2 Determine hydrology

 - See Chapter 6, Hydrology
 - Minimum data are drainage area map and a discharge-frequency plot

Step 3 Design downstream channel

 - See Chapter 7, Ditches and Channels
 - Minimum data are geometry and the rating curve for the channel that provides tailwater elevations for various flood frequencies

Step 4 Summarize data on design form

 - Enter data from steps 1-3

Step 5 Select design alternative

 - See Section 8.3.3, Geometric Criteria
 - Choose culvert material, shape, and entrance type
 - Consider flow line, cover, and utilities

Step 6 Select design discharge (Q_d)

 - See Section 8.3.2 Hydraulic Criteria
 - Determine flood frequency from criteria
 - Determine Q from discharge-frequency plot (Step 2)
• Divide Q by the number of barrels
• Select trial size

Step 7 Determine inlet control headwater depth (HWi)
 • Use the appropriate inlet control nomographs in Appendix 8C

Step 8 Determine outlet control headwater depth at inlet (HWoi):
 a. Calculate the tailwater depth (TW) using the design flow rate and normal depth (single section), using a water surface profile, or obtain it from other sources
 b. Calculate critical depth (dc) using the appropriate chart in Appendix 8C
 • Locate flow rate and read dc
 • dc cannot exceed D
 • If dc>0.9D, consult Handbook of Hydraulics (King and Brater) for a more accurate dc, if needed, since curves are truncated where they converge
 c. Calculate \(\left(\frac{dc+D}{2} \right) \)
 d. Determine ho
 \[ho = \text{the larger of } TW \text{ or } \left(\frac{dc+D}{2} \right) \]
 e. Determine Ke
 f. Entrance loss coefficient from Appendix 8D-2
 g. Determine losses through the culvert barrel (H)
 • Use the nomographs in Appendix 8C or Equation 8.5 or 8.6 if outside range of nomograph scales
 h. Calculate outlet control headwater (HWoi)
 • Use Equation 8.8, if Vu and Vd are neglected:
 \[HWoi = ho + H - S_o L \]
 • Add other losses (bends, grates, etc.) to right side of equation.
 • Use Equation 8.1, 8.4c and 8.6 to include Vu and Vd.
 • If HWoi is less than 1.2D and control is outlet control:
 ➢ The barrel may flow partly full

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-62 of 77
➢ The approximate method of using the greater of tailwater or \(\frac{d_c+D}{2} \) may not be applicable
➢ Backwater calculations should be used to check the result
➢ If the headwater depth falls below 0.75D, the approximate nomograph should not be used

Step 9 *Determine controlling headwater (HW_c)*

a. Compare HW_i and HW_oi, and use the higher

b. Compare HW to allowable HW criteria (cover, \(\frac{HW}{D} \), shoulder)

Step 10 *Compute discharge over the roadway (Q_r) if applicable* (See Section 8.4.3.6)

Step 11 *Compute total discharge (Q_t)*

\[Q_t = Q_d + Q_r \]

Step 12 *Calculate outlet velocity (V_o) and normal depth (d_n)*

If **inlet control** is the controlling headwater:

a. Calculate flow depth at culvert exit
 - Use normal depth (d_n), or
 - Use water surface profile

b. Calculate flow area (A)

c. Calculate exit velocity, \(V_o = \frac{Q}{A} \)

If **outlet control** is the controlling headwater:

a. Calculate flow depth at culvert exit
 - Use (d_c) if d_c > TW
 - Use (TW) if d_c < TW < D
 - Use (D) if D < TW

b. Calculate flow area (A)

c. Calculate exit velocity, \(V_o = \frac{Q}{A} \)

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-63 of 77
Step 13 Review results

Compare alternative design with constraints and assumptions. If any of the following are exceeded, repeat steps 5 through 12:

- The barrel must have adequate cover
- The length should be close to the approximate length
- The headwalls and wingwalls must fit the site
- The allowable headwater should not be exceeded and \(\frac{\text{HW}}{D} \) should be at least 1.0 and not exceed 1.5
- The design storm should provide 18” of clearance to the low shoulder of the crossing

Step 14 Analyze base flood discharge

Step 15 Related designs

Consider the following options (See Sections 8.3.6 and 8.4.4 and Chapter 11, Stormwater Management):

- Tapered inlets if culvert is extremely long, in inlet control, and has limited available headwater
- Flood routing if a large upstream headwater pool exits
- Energy dissipators or standard EC-1, as needed. Special design energy dissipators may be required. Appendix 8E-1 contains procedures and discussion for a riprap basin
- Weirs, if needed to maintain low flow through multiple barrel culverts

8.5.3 Culvert Design Sample Problems

The following example problem follows the Design Procedure Steps described in Section 8.5.2.

Step 1. Assemble Site Data and Project File

a. Site survey project file contains:
 - USGS, site, and location maps
 - Roadway profile, and
 - Embankment cross-section

b. Site visit notes indicate:
 - No sediment or debris problems
 - No nearby structures
 - Studies by other agencies – none

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-64 of 77
c. Environmental, risk assessment shows:
 • No buildings near floodplain
 • No sensitive floodplain values
 • No FEMA involvement
 • Convenient detours exist

d. Design criteria:
 • 50-year frequency for design, and
 • Base flood frequency for impact
 • Allowable headwater depth for design flood = 8.5’
 • 100-year floodplain depth = 10.0’

Step 2. Determine Hydrology

USGS Regression equations yield:

\[Q_{50} = 400 \text{ cfs} \]
\[Q_{100} = 500 \text{ cfs} \]

Step 3. Account for tailwater

Slope = 0.05 ft./ft.
Length = 100’

The predetermined depths and velocities for the downstream channel are:

<table>
<thead>
<tr>
<th>Q (cfs)</th>
<th>TW (ft.)</th>
<th>V (ft./s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>2.8</td>
<td>18</td>
</tr>
<tr>
<td>500</td>
<td>3.1</td>
<td>19</td>
</tr>
</tbody>
</table>

Step 4. Summarize data on design form

(See Figure 8-11)

Step 5. Select trial design structure

Shape: Box
Size: 7.0’ (B) by 6.0’ (D)
Material: Concrete
Entrance: Wingwalls with 30°-75° flare
Step 6. **Select design discharge**

\[Q_d = Q_{50} = 400 \text{ cfs} \]

Step 7. **Determine inlet control headwater depth (HW\textsubscript{i})**

Use inlet control nomograph - Appendix 8C-8

a. \(D = 6.0' \)

b. \(\frac{Q}{B} = \frac{400}{7} = 57 \text{ cfs} \)

c. \(\frac{HW}{D} = 1.30 \)

d. \(HW_i = \left(\frac{HW}{D} \right) D = (1.30)6.0 = 7.80 \text{ ft.} \) (Neglect the approach velocity.)

Step 8. **Determine outlet control headwater depth at inlet (HW\textsubscript{oi})**:

a. \(TW = 2.8' \) for \(Q_{50} = 400 \text{ cfs} \)

b. \(d_c = 4.6' \) from Appendix 8C-14

c. \(\frac{d_c + D}{2} = \left(\frac{4.6 + 6.0}{2} \right) = 5.3 \text{ ft.} \)

d. \(h_o = \) the larger of \(TW \) or \(\frac{d_c + D}{2} = 5.3 \text{ ft.} \)

e. \(K_e = 0.4 \) from Appendix 8D-2 (for 30°-75° wingwalls)

f. Determine (H) - use Appendix 8C-15

- \(K_e \) scale = 0.4
- Culvert length, \(L = 100 \text{ ft.} \)
- \(n = 0.012 \) (same as on Appendix 8C-15)
- Area = 42 \text{ ft}^2
- \(H = 2.3 \text{ ft.} \)

g. \(HW_{oi} = h_o + H - S_0 L \)

\[HW_{oi} = 2.3 + 5.3 - 100(0.05) \]

\[HW_{oi} = 2.6 \text{ ft.} \]
Step 9. Determine controlling headwater (HW_c)

$HW_i = 7.80'$

$HW_{oi} = 2.6'$

$HW_c = \text{The greater of } HW_i \text{ or } HW_{oi}$

$HW_c = HW_i = 7.80'$

The culvert is in inlet control

Step 10. Compute discharge over the roadway (Q_r)

Not applicable

Step 11. Compute total discharge (Q_t)

$Q_t = 400 \text{ cfs}$

Step 12. Determine outlet velocity (V_o)

- Use Appendix 8C-83
- Enter 4.8 (400×0.012) on the horizontal, “Qn” scale
- Read vertically to the “Slope” curve of 0.05
- Read horizontally to the “Vn” scale and find a value of 0.37. Then divide this by the “n” value (0.012) and find a velocity of 30.8 fps.

Step 13. Repeat steps 5-10 for check flood (100-yr.):

- Compare design with constraints and assumptions. If any of the following are exceeded, repeat steps 5 through 12:
 - 100-year floodplain depth = 10.0' > 9.6'
 - Overtopping flood frequency > 50-year

Step 14. Design Considerations (None)

Step 15. Complete any additional necessary documentation
Figure 8-11. Completed Culvert Design Form, Sample Problem

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-68 of 77
8.5.4 Buoyancy Protection Procedure

8.5.4.1 Hydrostatic Uplift and Resistance

- Resistance = Weight of pipe + Weight of water (in pipe) + Weight of fill (over pipe), lbs/ft.
- Hydrostatic Uplift (Buoyant) Force = Weight of water displaced by the pipe, lbs/ft.
- The following average values can be used in the analysis:

 Weight of Pipe - See manufacturer's weight tables for type and size of pipe specified.
 Weight of Fill (Dry) - 100 lbs/ft³
 Weight of Fill (Saturated) - 37.6 lbs/ft³
 Weight of Water - 62.4 lbs/ft³

![Figure 8-12. Hydrostatic Uplift Forces and Effects on Pipe](image)

If Resistance < Hydrostatic Uplift:

Increase weight on end of pipe by adding concrete endwall or concrete anchor blocks.
8.5.4.2 Buoyancy Protection Sample Problem

Given:

- 48" Corrugated Metal Pipe, 12 gage
- Fully Coated with Paved Invert
- Std. ES-2 End Section
- Q = 96 cfs

Computed Values:

- \(\frac{H}{D} = 1.25 \)
- \(H = 5' \)
- \(d_n = 2.5' \)
- \(d_c = 2.8' \)

Assumed Values:

- Weight of Fill (Dry) = 100 lbs/ft³
- Weight of Fill (Saturated) = 37.6 lbs/ft³
- Weight of Water = 62.4 lbs/ft³
- Weight of Pipe = 84 lbs/ft.

(Handling weight of corrugated steel pipe available in Appendix 8F-1 and 8F-2)

Figure 8-13. Buoyant Forces Acting on Pipe

Step 1: Compute buoyant force acting on pipe

(At any section along length of pipe)

Buoyant force (lbs/ft.) = Weight of water displaced by pipe (lbs/ft³)

Buoyant force = \(L(A)(\gamma) \)

Where:

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-70 of 77
\[L = \text{Unit length of pipe, ft.} \]
\[A = \text{Cross sectional area of pipe, ft}^2 \]
\[\gamma = \text{Unit weight of water} = 62.4 \text{ lbs/ft}^3 \]

\[
\begin{align*}
\gamma & = \frac{\pi (\frac{4}{4})^2}{4} (62.4) \\
& = \frac{\pi (4)^2}{4} (62.4) \\
& = 784 \text{ lbs/ft.}
\end{align*}
\]

Step 2: Compute total surcharge at section 1

(Located at inlet end of pipe)

Surcharge (lbs./ft.) = Wt. of Fill + Wt. of Water + Wt. of Pipe

Compute weight of fill material (Hatched Area, Figure 8-14)

Weight of Fill = Area x 1 ft. x 37.6 lbs/ft³. (saturated fill)

\[
\text{Area} = \left[\frac{D^2 - \frac{\pi D^2}{4}}{2} \right] = \left[\frac{(4)^2 - \frac{\pi (4)^2}{4}}{2} \right] = 1.7 \text{ sq. ft.}
\]

Weight of Fill = 1.7 (1)(37.6)

Weight of Fill = 64 lbs/ft.

Compute weight of water (inside pipe)

Weight of Water = Area of flow x 1 ft. x 62.4 lbs/ft³

Assume depth of water, \(d = d_n = 2.5' \)

\[
\frac{d}{D} = \frac{2.5}{4} = 0.625
\]

\[
\frac{\text{Area}}{D^2} = 0.516 \text{ (From Appendix 8F-5)}
\]

Area of flow = 0.516 x 4 ft² = 8.26 ft²

Weight of Water = 8.26 ft² x 1 ft. x 62.4 lbs/ft³.

Weight of Water = 515 lbs/ft.
- Determine weight of pipe

 84 lbs/ft.

- Compute total surcharge at section 1

 \[
 \text{Surcharge} = \text{Wt. of Fill} + \text{Wt. of Water} + \text{Wt. of Pipe} \\
 \text{Surcharge} = 64 + 515 + 84 \\
 \quad = 663 \text{ lbs/ft.}
 \]

- Section 1 Summary

 Surcharge (663 lbs./ft.) < Buoyant Force (784 lbs./ft.)

 Therefore, pipe is unstable at Section 1

Step 3: Compute total surcharge at Section 2

(Section 2 is located where headwater elevation intercepts the fill slope 6' from the inlet end of the pipe)

Surcharge (lbs./ft.) = Wt. of Fill + Wt. of Water + Wt. of Pipe

- **Compute weight of fill material (Hatched Area, Figure 8-15)**

 Area = \[
 \left[\frac{D^2 - \pi D^2}{2} \right] + 1D = \left[\frac{(4)^2 - \pi (4)^2}{2} \right] + 1(4) = 5.7 \text{ sq. ft.}
 \]

 Weight of Fill = 5.7 ft.² x 1 ft. x 37.6 lbs/ft³ (saturated fill)

 Weight of Fill = 214 lbs/ft.

- **Compute weight of water (Inside Pipe)**

 Assume depth of water, d = d₀ = 2.5'

 Weight of Water = 515 lbs/ft.

 (Same as Section 1)
• **Determine weight of pipe**

 84 lbs/ft. (Same as Section 1)

• **Compute total surcharge at Section 1**

 Surcharge (lbs/ft.) = Wt. Fill + Wt. Water + Wt. Pipe

 Surcharge = 214 + 515 + 84 = 813 lbs/ft.

• **Section 2 Summary**

 Surcharge (813 lbs/ft.) > Buoyant Force (784 lbs/ft.)

 Therefore, pipe is stable at Section 2

Step 4: **Determine minimum weight required to counteract buoyant force**

a. Plot a graph of length along the pipe (from inlet end) versus total surcharge buoyancy (weight). Let the horizontal axis represent the length along the pipe (ft.) and the vertical axis represent the surcharge/buoyancy (lbs/ft.) as shown in Figure 8-16.

![Figure 8-16. Surcharge/Buoyancy along Length of Pipe](image)

b. Plot the values of length along pipe and total surcharge for Section 1 (from Step 2) and Section 2 (from Step 2) on the graph (Points A and B) and connect them with a straight line (Line A).

c. Plot horizontal line (Line B) on the graph representing the buoyant force computed in Step 1.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-73 of 77
d. The area of the triangle formed by Line A, Line B and the vertical axis of the graph (hatched area) represents the minimum weight required to balance the uplift (buoyant) force.

e. Determine minimum required weight (area of triangle).

1) Using ratio and proportion analysis, determine length along horizontal axis where Line A and Line B intersect (Point C).

 Find intersection (Point C) at 4.88'

2) Weight (Area) = (Vertical side x Horizontal side)/2.

3) Weight = (122 lbs./ft. x 4.88 ft.) / 2 = 298 lbs.

f. Determine minimum weight of required anchor block. Set minimum weight of anchor block equal to the greater of:

1) The required additional weight (Step 4e) plus 100 lbs. or

2) 1.5 times the required additional weight (Step 4e).

g. Determine size of required anchor block.

1) Use minimum size anchor block if its weight is equal to or greater than minimum weight required (Step f).

2) If minimum weight required (Step f) is greater than weight of minimum size anchor block, increase dimensions of minimum size anchor block to provide weight equal to or greater than minimum required weight (Step f).

Typical counterweight details are shown in Figure 8-17. Dimensions for the weight of minimum size counterweight can be found in Appendix 8F-3.
Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-75 of 77
8.6 References

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-76 of 77

Policy Memorandum 3-78, "Flood Plain Management Program for State Agencies."

VDOT Road and Bridge Specifications - Latest Edition.

VDOT Survey Instructions Manual.

Due to the magnitude of the changes to this section, shading has been omitted.

Chapter 8-77 of 77
Appendix 8B-1 Culvert Design Form LD-269

LD-269
Rev. May 2016

<table>
<thead>
<tr>
<th>Project</th>
<th>Plan Sheet No.</th>
<th>Designer</th>
<th>Sheet</th>
<th>of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROLOGICAL DATA:

<table>
<thead>
<tr>
<th>D.A.</th>
<th>AC</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

STATION:

<table>
<thead>
<tr>
<th>AHW Controls</th>
<th>100 yr. Flood plain elev.</th>
<th>Design AHW depth elev.</th>
<th>Structures elev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>freq.</td>
<td>TWelev.</td>
<td>freq.</td>
<td>TWelev.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCHARGES USED

<table>
<thead>
<tr>
<th>CFS</th>
<th>Detours Available</th>
<th>ADT</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RISK ASSESSMENT

<table>
<thead>
<tr>
<th>CFS</th>
<th>Overtopping Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEADWATER COMPUTATIONS

<table>
<thead>
<tr>
<th>Culvert Type & Size</th>
<th>Q</th>
<th>Q/B</th>
<th>Headwater Computations</th>
<th>Outlet Computations</th>
<th>Outlet Control</th>
<th>End Treat.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HW/HD</td>
<td>HW</td>
<td>Ke</td>
<td>dc</td>
<td>(dc+D)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY & RECOMMENDATIONS:

- Design Flood Exceed. Prob.
- Overtop Flood Exceed. Prob.
- Base Flood 1% Exceed. Prob.

Design Flood Elev.
Overtop Flood Elev.
Base Flood Elev.
Appendix 8C-2 Inlet Control, Circular Corrugated Metal

CHART 2

EXAMPLE

\[\frac{Q}{D} = 86 \text{ cfs} \]

\[D = 36 \text{ inches (3.0 feet)} \]

\[
\begin{align*}
(1) & \quad H/W \quad D \\
(2) & \quad 1.6 \quad 5.6 \\
(3) & \quad 2.1 \quad 6.3 \\
(4) & \quad 2.2 \quad 6.6 \\
\end{align*}
\]

*0 in feet

EXTRACTION

D - Diameter of Culvert in Inches
D - Standard C.M.

D - Discharge in C.F.S.

D - Entrance Type

To use scale (2) or (3) project horizontally to scale (1), then use straight inclined line through D and Q scales, or reverse as illustrated.

HEADWATER DEPTH FOR C.M. PIPE CULVERTS WITH INLET CONTROL

Source: HDS-5
Appendix 8C-3 Inlet Control, Circular with Beveled Ring

CHART 3

HEADWATER DEPTH FOR CIRCULAR PIPE CULVERTS
WITH BEVELED RING INLET CONTROL

Source: HDS-5
Appendix 8C-4 Critical Depth, Circular

CHART 4

BUREAU OF PUBLIC ROADS
JAN. 1964

CRITICAL DEPTH
CIRCULAR PIPE

Source: HDS-5
CHART 5

For outlet crown not submerged, compute HW by methods described in the design procedure.

HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL

n = 0.012

Source: HDS-5
Appendix 8C-6 Outlet Control, Circular Corrugated Metal

Source: HDS-5
Appendix 8C-9 Inlet Control, Concrete Box, Flared Wingwalls at 18° to 33.7° and 45°, Beveled Top Edge

Source: HDS-5
Appendix 8C-10 Inlet Control, Concrete Box, 90° Headwall, Chamfered or Beveled Edges

CHART 10

EXAMPLE

\[Q = 77.7 \text{ ft} \times 5 \text{ ft} \times 500 \text{ CFS} \times \frac{Q}{100} = 7.7 \text{ ft} \]

<table>
<thead>
<tr>
<th>CHAMFER D1/4</th>
<th>HW (feet)</th>
<th>HW (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL EDGES</td>
<td>0</td>
<td>11.5</td>
</tr>
<tr>
<td>1/2 INFT BEVEL</td>
<td>2.29</td>
<td>10.6</td>
</tr>
<tr>
<td>1 INFT BEVEL</td>
<td>1.06</td>
<td>9.4</td>
</tr>
</tbody>
</table>

INLET FACE -> ALL EDGES:

1/1 FT. BEVELED 32.7° (1:1.15)
1/2 IN FT. BEVELED 45° (1:1)
3/4 INCH CHAMBERS

HEADWATER DEPTH IN TERMS OF HEIGHT (HW/1)

DISCHARGE PER FOOT OF BARREL WIDTH (Q/NB) IN CFS PER FOOT

HEIGHT OF BARREL (D) IN FEET

NOTES ON BEVELS

FACE DIMENSION OF ALL SIDE AND TOP BEVELS SHALL NOT BE LESS THAN SHOWN. TO OBTAIN BEVEL TERMINATION IN ONE PLANE IN A RECTANGULAR BOX, EITHER INCREASE D OR B, OR DECREASE THE BEVEL ANGLE.

HEADWATER DEPTH FOR INLET CONTROL RECTANGULAR BOX CULVERTS 90° HEADWALL CHAMFERED OR BEVELED INLET EDGES

FEDERAL HIGHWAY ADMINISTRATION
MAY 1973

Source: HDS-5
Appendix 8C-11
Inlet Control,
Single Barrel Concrete Box,
Skewed Headwalls Chamfered or Beveled Edges

Example

<table>
<thead>
<tr>
<th>B (ft)</th>
<th>D (ft)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>

Chart 11

- **Beveled Edges - Top and Sides**
 - 3/4 inch chamfer all edges

- **Skew Angle**
 - 45° to 0°

Headwater Depth in Terms of Height (H/W/D)

- **Obtuse Angle Side**
 - Bevel not necessary for skew 30° and more

- **Acute Angle Side**
 - Beveled inlet edges designed for same capacity at any skew

Federal Highway Administration
May 1973

Source: HDS-5
Appendix 8C-12 Inlet Control, Concrete Box, Flared Wingwalls, Normal and Skewed Inlets, Chamfered Top Edge

Source: HDS-5
Appendix 8C-13 Inlet Control, Concrete Box with Offset Flared Wingwalls, Beveled Top Edge

EXAMPLE

B = 7 FT D = 5 FT Q = 600 CFS

\(d = 71.5 \)

WINGWALL TOP EDGE HW & D FT

12 45° 1/2 IN./FT 2.06 10.3
11 33.7° 1 IN./FT 1.90 25
10 18.4° 1 1/4 IN./FT 1.82 40

HEADWATER DEPTH IN TERMS OF HEIGHT (HW/2)

16.4° WW & d = 0.063D
33.7° WW & d = 0.063D
45° WW & d = 0.042D

TOP EDGE BEVEL ANGLE REQUIRED

\(\beta \) ANGLE

0.042 45°
0.063 33.7°

CHART 13

Source: HDS-5
Appendix 8C-16
Inlet Control, Corrugated Metal Box, Rise/Span <0.3

Example:

\[
Q = 494 \text{ cfs}
\]

Entrance bw Type	**D**	**H.W.**	**H.W.**
(2) | 1.02 | 4.59 | 4.59
(3) | 1.05 | 4.73 | 4.73
(5) | 1.13 | 5.09 | 5.09

Nomographs adapted from materials furnished by Kaiser Aluminum and Chemical Corporation

Source: HDS-5
Appendix 8C-17
Inlet Control,
Corrugated Metal Box,
0.3≤ Rise/Span <0.4

Source: HDS-5
Appendix 8C-18

Inlet Control, Corrugated Metal Box,
0.4 < Rise/Span < 0.5

CHART 18

Example:
D = 9.97 ft
Q = 1520 cfs

Entrance Type | HW | HW
(2) | 0.88 | 8.61
(3) | 0.90 | 8.70
(5) | 0.97 | 9.38

Headwater Depth

0.4 ≤ Rise / Span < 0.5

WITH INLET CONTROL

Source: HDS-5
Appendix 8C-19

Inlet Control, Corrugated Metal Box, 0.5 ≤ Rise/Span

Chart 19

<table>
<thead>
<tr>
<th>(2) 90° headwall.</th>
<th>(3) Thick well projecting.</th>
<th>(5) Thin well projecting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 1.04</td>
<td>8.32</td>
<td>3</td>
</tr>
<tr>
<td>(3) 1.07</td>
<td>8.55</td>
<td>3.3</td>
</tr>
<tr>
<td>(5) 1.15</td>
<td>9.20</td>
<td>4</td>
</tr>
</tbody>
</table>

Example:
- D = 8.0 ft
- Q = 1004 cfs

Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Source: HDS-5
Appendix 8C-20 Critical Depth, Corrugated Metal Box

CHART 20

EXAMPLE:
- **RISE (D) = 6 ft 6 in**
- **SPAN (B) = 22 ft 1 in**
- **AREA (A) = 118.4 ft²**
- **FLOW (Q) = 1050 ft³/s**
- **RISE / SPAN = 6.5 / 22.06 = 0.29**

\[
\frac{Q}{AD} = \frac{1050}{(118.4)(6.5)^{0.5}} = 3.48
\]

\[
\frac{c_c}{D} = 0.63
\]

\[
d_c = 0.63(6.5) = 4.1 \text{ ft}
\]

Source: HDS-5
Appendix 8C-21
Outlet Control,
Corrugated Metal Box, Concrete Bottom
Rise/Span <0.3

CHART 21

Area (ft²) \(\bar{n} \)
20 - 30 0.025
31 - 150 0.024

Source: HDS-3
Appendix 8C-22 Outlet Control, Corrugated Metal Box, Concrete Bottom
0.3 ≤ Rise/Span < 0.4

Source: HDS-5
Appendix 8C-23 Outlet Control, Corrugated Metal Box, Concrete Bottom, 0.4 ≤ Rise/Span < 0.5

Source: HDS-5
Appendix 8C-24 Outlet Control, Corrugated Metal Box, Concrete Bottom
0.5 ≤ Rise/Span

Source: HDS-5
Appendix 8C-25 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, Rise/Span <0.3

Source: HDS-5
Appendix 8C-26 Outlet Control, Corrugated Metal Box,
Corrugated Metal Box,
0.3 ≤ Rise/Span < 0.4

Source: HDS-5
Appendix 8C-27 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom,
0.4 ≤ Rise/Span < 0.5

Source: HDS-5
Appendix 8C-28 Outlet Control, Corrugated Metal Box,
Corrugated Metal Bottom,
0.5 ≤ Rise/Span

Source: HDS-5
Appendix 8C-29 Inlet Control, Oval Concrete, Long Axis Horizontal

EXAMPLE
Size 76" x 48" Q = 300 cfs

D (feet)

Q (cfs)

151 x 97
136 x 87
121 x 77
113 x 72
106 x 68
98 x 63
91 x 58
83 x 53
76 x 48
68 x 43
60 x 38
53 x 34
49 x 32
45 x 29
42 x 27
38 x 24
30 x 19
23 x 14

To use scale (2) or (3) draw a straight line through known values of size and discharge to intersect scale (1). From point on scale (1) project horizontally to solution on either scale (2) or (3).

HEADWATER DEPTH FOR OVAL CONCRETE PIPE CULVERTS
LONG AXIS HORIZONTAL
WITH INLET CONTROL

Source: HDS-5
Appendix 8C-30 Inlet Control, Oval Concrete, Long Axis Vertical

EXAMPLE
Size: 38" x 60"
Q = 200 cfs

<table>
<thead>
<tr>
<th>HW (feet)</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>13.0</td>
</tr>
<tr>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2.1</td>
<td>10.5</td>
</tr>
</tbody>
</table>

* D in feet

To use scale (2) or (3) draw a straight line through known values of size and discharge to intersect scale (1). From point on scale (1) project horizontally to solution on either scale (2) or (3).

HW/D SCALE

<table>
<thead>
<tr>
<th>ENTRANCE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Square edge with headwall</td>
</tr>
<tr>
<td>(2) Groove and with headwall</td>
</tr>
<tr>
<td>(3) Groove and projecting</td>
</tr>
</tbody>
</table>

HEADWATER DEPTH FOR OVAL CONCRETE PIPE CULVERTS
LONG AXIS VERTICAL
WITH INLET CONTROL

Source: HDS-5
Source: HDS-5
Appendix 8C-32 Critical Depth, Oval Concrete, Long Axis Vertical

Source: HDS-5
Appendix 8C-33 Outlet Control, Oval Concrete, Long Axis Horizontal or Vertical

CHART 33

HEAD FOR OVAL CONCRETE PIPE CULVERTS
LONG AXIS HORIZONTAL OR VERTICAL
FLOWING FULL
n = 0.012

Source: HDS-5
Appendix 8C-34 Inlet Control, Corrugated Metal Pipe-Arch

CHART 34

- **EXAMPLE**
 - Size: 36" x 22"
 - Q = 20 cfs
 - Headwater Depth in Terms of Rise (HW/D):
 - (1) 1.9
 - (2) 1.5
 - (3) 1.1

- **SCALE**
 - 100
 - 80
 - 60
 - 40
 - 20

- **ENTRANCE TYPE**
 - (1) Headwall
 - (2) Mitered to conform to slope
 - (3) Projecting

To use scale (2) or (3), project horizontally to scale (1), then use straight inclined line through D and Q scales, or reverse as illustrated.

HEADWATER DEPTH FOR C. M. PIPE-ARCH CULVERTS WITH INLET CONTROL

ADDITIONAL SIZES NOT DIMENSIONED ARE LISTED IN FABRICATOR'S CATALOG

Source: HDS-5
CHART 35

HEADWATER DEPTH FOR INLET CONTROL
STRUCTURAL PLATE PIPE-ARCH CULVERTS
18-IN. RADIUS CORNER PLATE
PROJECTING OR HEADWALL INLET
HEADWALL WITH OR WITHOUT EDGE BEVEL

Source: HDS-5
Appendix 8C-36

Inlet Control, Structural Plate Pipe-Arch, 31" Corner Radius

Chart 36

<table>
<thead>
<tr>
<th>Example</th>
<th>Size: "17'4" x 11'5" Q: 2500 CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Headwall</td>
</tr>
<tr>
<td>No Bevel Bevel</td>
<td></td>
</tr>
<tr>
<td>HW/D</td>
<td>16.4</td>
</tr>
<tr>
<td>HW/FT</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Source: HDS-5

Headwater Depth for Inlet Control Structural Plate Pipe-Arch Culverts

31"-IN. RADIUS CORNER PLATE

PROJECTING OR HEADWALL INLET

HEADWALL WITH OR WITHOUT EDGE BEVEL
Appendix 8C-37 Critical Depth, Standard Corrugated Metal Pipe-Arch

CHART 37

Critical Depth - d_c Feet

Discharge - Q - CFS

d_c CANNOT EXCEED TOP OF PIPE

Source: HDS-5
Appendix 8C-38
Critical Depth, Structural Plate
Corrugated Metal Pipe-Arch,
18" Corner Radius

CHART 38

BUREAU OF PUBLIC ROADS
JAN 1964

CRITICAL DEPTH
STRUCTURAL PLATE
C.M. PIPE-ARCH
18 INCH CORNER RADIUS

Source: HDS-5
Appendix 8C-39 Outlet Control, Standard Corrugated Metal Pipe-Arch

CHART 39

For outlet crown not submerged, compute HW by methods described in the design procedure.

HEAD FOR
STANDARD C.M. PIPE-ARCH CULVERTS
FLOWING FULL
n=0.024

Source: HDS-5
Appendix 8C-40
Outlet Control, Structural Plate Corrugated Metal Pipe-Arch, 18" Corner Radius

CHART 40

For outlet crown not submerged, compute HW by methods described in the design procedure.

LENGTH-L-IN FEET

HEAD-H-IN FEET

H=6.1 FT. L=17 FEET

EXAMPLE

0=260 CFS

HEAD FOR STRUCTURAL PLATE CORRUGATED METAL PIPE ARCH CULVERTS 18 IN. CORNER RADIUS FLOWING FULL

n=0.0327 TO 0.0306

BUREAU OF PUBLIC ROADS JAN. 1963

Source: HDS-5
Appendix 8C-41 Inlet Control, Corrugated Metal Arch,
0.3 ≤ Rise/Span < 0.4

Source: HDS-5
Appendix 8C-42 Inlet Control, Corrugated Metal Arch,
0.4 ≤ Rise/Span < 0.5

CHART 42

Entrance Conditions
(2) 90° headwall,
(4) Mitered to embankment,
(5) Thin wall projecting corrugated metal.

Discharge (Q) in cfs

Arch Area in square feet

Headwater Depth to Rise (H/W / D)

Example
A = 277.5 ft²
Q = 6000 cfs

Entrance Type

<table>
<thead>
<tr>
<th>HW</th>
<th>HW</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>2.03</td>
<td>26.74</td>
</tr>
<tr>
<td>(4)</td>
<td>2.40</td>
<td>31.64</td>
</tr>
<tr>
<td>(5)</td>
<td>2.33</td>
<td>30.69</td>
</tr>
</tbody>
</table>

HEADWATER DEPTH
FOR C.M. ARCH CULVERTS
0.4 ≤ RISE / SPAN < 0.5
WITH INLET CONTROL

Source: HDS-5
Appendix 8C-43
Inlet Control, Corrugated Metal Arch,
0.5 ≤ Rise/Span

CHART 43

Entrance Conditions
(2) 90° headwall.
(4) Mitered to embankment.
(5) Thin wall projecting corrugated metal.

Example
\[A = 1.05 \text{ ft}^2 \]
\[Q = 1400 \text{ cfs} \]

Entrance Type
\begin{align*}
\text{Discharge (Q) in cfs} & \quad \text{Headwater Depth to Rise (H W / D)} \\
(2) & \quad 1.50 \quad 12.38 \\
(4) & \quad 1.75 \quad 14.44 \\
(5) & \quad 1.63 \quad 13.45 \\
\end{align*}

Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Source: HDS-5
Chapter 8 - Culverts

Appendix 8C-44 Critical Depth, Corrugated Metal Arch

CHART 44

EXAMPLE:
RISE (D) = 5 ft 9 in
SPAN (B) = 16 ft
AREA (A) = 66.8 ft²
FLOW (Q) = 400 ft³/s
RISE/SPAN = 5.75/16 = .36
Q/AD₀.5 = 400/(66.8)(5.75)₀.5
2.5

$\frac{D}{d_c} = .47$

$\frac{d_c}{D} = (.47)(5.75) = 2.7$ ft

Source: HDS-5
Appendix 8C-45 Outlet Control, Corrugated Metal Arch, Concrete Bottom,
0.3 ≤ Rise/Span < 0.4

CHART 45

Discharge (Q) in cfs, Area of Culvert

0 1000 2000 3000 4000 5000

260 240 220 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

Length (L) in feet

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Head (h) in feet

Area (ft²) \(\bar{n} \)

20 - 60 0.025
61 - 155 0.024
156 - 260 0.023

Example:

Q = 400 cfs
H = 100
Slope = 5%

Submerged Outlet Culvert Flowing Full

C.M. Arch Culverts

FLOWING FULL

CONCRETE BOTTOM

0.3 ≤ RISE/Span < 0.4

Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Duplication of this nomograph may distort scale

Source: HDS-5
Chapter 8 - Culverts

Appendix 8C-46 Outlet Control, Corrugated Metal Arch, Concrete Bottom, 0.4 ≤ Rise/Span < 0.5

CHART 46

Discharge (Q) in cfs. Area of Culvert Length (L) in feet Head (H) in feet

<table>
<thead>
<tr>
<th>Area (ft²)</th>
<th>θ</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 150</td>
<td>0.025</td>
<td>Q = 200 cfs</td>
</tr>
<tr>
<td>151 - 360</td>
<td>0.024</td>
<td></td>
</tr>
</tbody>
</table>

Source: HDS-5

Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Duplication of this nomograph may distort scale
Appendix 8C-47 Outlet Control, Corrugated Metal Arch, Concrete Bottom,
0.5 ≤ Rise/Span

CHART 47

Discharge (Q) in cfs. Area of Culvert
1000 5000
900 4000
800 3000
700 2000
600 1000
500
400
300
200
100

Turning Line

Area [ft²] \bar{K}_e

20–30 0.026
31–150 0.025
151–360 0.024

Head (H) in feet

Source: HDS-5
Appendix 8C-48 Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.3 ≤ Rise/Span < 0.4

Source: HDS-5
Appendix 8C-49 Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.4≤ Rise/Span <0.5

CHART 49

Area of Culvert

<table>
<thead>
<tr>
<th>Discharge (q) in cfs.</th>
<th>Area (ft²)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20-90</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>91-360</td>
<td>0.028</td>
</tr>
</tbody>
</table>

HEAD FOR C.M. ARCH CULVERTS FLOWING FULL EARTH BOTTOM (n_b = 0.022) 0.4 ≤ RISE/SPAN <0.5

Source: HDS-5
Appendix 8C-50 Outlet Control, Corrugated Metal Arch,
Earth Bottom,
0.5 ≤ Rise/Span

CHART 50

Discharge (Q) in cfs.
Area of Culvert

5000
4000
3000
2000
1000
900
800
700
600
500
400
300
200
100

0
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

500
400
300
200
100

Area (ft²)

Length (L) in feet

0.25
0.50
0.50
0.75
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

0 ≤ Rise ≤ 200
0 ≤ Rise ≤ 400
0 ≤ Rise ≤ 500

Example

A = 600 ft²

Head (H) in feet

14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.75

Source: HDS-5
Appendix 8C-51
Inlet Control, Structural Plate Corrugated Metal, Circular or Elliptical

Source: HDS-5
Appendix 8C-52 Inlet Control, Structural Plate Corrugated Metal Arch, High and Low Profile

Source: HDS-5
Appendix 8C-53 Critical Depth, Structural Plate Ellipse, Long Axis Horizontal

EXAMPLE:
RISE (D) = 13 ft
SPAN (B) = 20 ft 1 in
AREA (A) = 201.8 ft²
FLOW (Q) = 2100 ft³/s

\[\frac{Q}{AD^{0.5}} = \frac{2100}{(201.8)(130)^{0.5}} \]
\[= 2.9 \]

\[\frac{d_c}{D} = 0.65 \]

\[d_c = (0.65)(13) = 8.5 \text{ ft} \]
Appendix 8C-54 Critical Depth, Structural Plate Arch, Low and High Profile

EXAMPLE:
RISE (D) = 13 ft 3 in
SPAN (B) = 26 ft
AREA (A) = 294 ft²
FLOW (Q) = 2000 ft³/s
RISE/SPAN = 13.25/26 = 0.51
Q/AD = 2000/(294.0)(13.25) = 1.9
D² = 0.45
D = \sqrt{0.45}(13.25) = 6.0 ft

DIMENSIONLESS CRITICAL DEPTH CHART, STRUCTURAL PLATE LOW AND HIGH PROFILE ARCHES

Source: HDS-5
Chart 8C-55 Throat Control, Circular Section, Side-Tapered

Example:

D = 72 inches (6.0 feet)
Q = 600 CFS

Entrance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.36</td>
</tr>
<tr>
<td>2</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Graph:
- Scale: Entrance
 - (1) Smooth Inlets (Concrete)
 - (2) Rough Inlets (CMP)

Chart 55

Throat Control
For Side-Tapered Inlets to Pipe Culvert
(Circular Section Only)

Source: HDS-5
Chart 8C-56
Face Control, Non-Rectangular Section, Side-Tapered to Circular

CHART 56

Example:
- Face Section
- Throat Section
- Plan
- Taper

Example:
- $E = 72$ inches (6.0 feet)
- $Q = 600$ CFS

<table>
<thead>
<tr>
<th>Inlet Type</th>
<th>HW</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>20</td>
<td>56</td>
</tr>
<tr>
<td>(2)</td>
<td>22.6</td>
<td>66</td>
</tr>
<tr>
<td>(3)</td>
<td>26.6</td>
<td>66</td>
</tr>
</tbody>
</table>

Source: HDS-5

9 - D - 59
Chapter 8 - Culverts

Chart 8C-57 Throat Control, Box Section, Tapered Inlet

CHART 57

HEIGHT OF BOX (D) IN FEET

RATIO OF DISCHARGE TO WIDTH OF CULVERT THROAT (Q/NB) IN CFS PER FOOT

EXAMPLE

5' x 5' BOX Q = 200 CFS
Q/NB = 40 CFS/FT.
HW/DO = 1.12
HW = 5.6 FEET

HEADWATER DEPTH AT THE THROAT IN TERMS OF HEIGHT (HW1/DO) IN FT. PER FT.

SIDE - TAPERED

SLOPE - TAPERED

VERTICAL FACE

MITERED FACE

THROAT CONTROL FOR BOX CULVERTS WITH TAPERED INLETS

9 - D - 60

Source: HDS-5
Appendix 8C-58 Face Control, Box Section, Side-Tapered

CHART 58

SCALE ENTRANCE TYPE

(1) 15° TO 25° WINDWALL FLARES WITH TOP EDGE BEVELED
 OR
 25° TO 90° WINDWALL FLARES WITH NO BEVELS (SQUARE EDGES)

(2) 25° TO 45° WINDWALL FLARES WITH TOP EDGE BEVELED
 OR
 45° TO 90° WINDWALL FLARES WITH BEVELS ON TOP AND SIDES

EXAMPLE

D = 8 FEET Q = 1200 CFS

INLET TYPE HW B1 B2 (FEET)

(1) 19 108 H0
(2) 169 108 H0

HEIGHT OF BOX (H) IN FEET

RATIO OF DISCHARGE TO WIDTH OF THE FACE (Q/B1) IN CF S PER FOOT

HEADWATER DEPTH AT THE FACE IN TERMS OF HEIGHT (HW / H) IN FT PER FT

FACE CONTROL FOR BOX CULVERTS WITH SIDE TAPERED INLETS

Source: HDS-5
Appendix 8C-59 Face Control, Box Section, Slope-Tapered

CHART 59

HEIGHT OF BOX (D) IN FEET

RATIO OF DISCHARGE TO FACE WIDTH (Q/B1) IN CFS PER FOOT

HEADWATER DEPTH AT CULVERT FACE IN TERMS OF HEIGHT (HM)/D) IN FT. PER FT.
Chart 8C-60 Discharge Coefficients for Roadway Overtopping

\[Q_r = C_d L H W_r^{1.5} \]

\[C_d = k_1 C_r \]

DISCHARGE COEFFICIENTS
FOR ROADWAY OVERTOPPING

Source: HDS-5
Appendix 8C-61 Circular Pipe Flow Chart (Diameter = 12"")

Source: HDS-3
Appendix 8C-62 Circular Pipe Flow Chart (Diameter = 15"")

Source: HDS-3
Appendix 8C-63 Circular Pipe Flow Chart (Diameter = 18"")

Source: HDS-3
Appendix 8C-64 Circular Pipe Flow Chart (Diameter = 21")

Source: HDS-3
Appendix 8C-65 Circular Pipe Flow Chart (Diameter = 24")

Source: HDS-3
Appendix 8C-66 Circular Pipe Flow Chart (Diameter = 27"")

Source: HDS-3
Appendix 8C-67 Circular Pipe Flow Chart (Diameter = 30")

Source: HDS-3
Appendix 8C-68 Circular Pipe Flow Chart (Diameter = 33")
Appendix 8C-69 Circular Pipe Flow Chart (Diameter = 36"

Source: HDS-3
Appendix 8C-70 Circular Pipe Flow Chart (Diameter = 42"")

Source: HDS-3
Appendix 8C-71 Circular Pipe Flow Chart (Diameter 48"")

Source: HDS-3
Appendix 8C-72 Circular Pipe Flow Chart (Diameter = 54")

Source: HDS-3
Appendix 8C-73 Circular Pipe Flow Chart (Diameter = 60"")

Source: HDS-3
Appendix 8C-74 Circular Pipe Flow Chart (Diameter = 66"")

Source: HDS-3
Appendix 8C-75 Circular Pipe Flow Chart (Diameter = 72"")

Source: HDS-3
Appendix 8C-76 Circular Pipe Flow Chart (Diameter = 84”)

Source: HDS-3
Appendix 8C-77 Circular Pipe Flow Chart (Diameter = 96")

Source: HDS-3
Appendix 8C-78 Rectangular Channel Flow Chart (B=2')

Source: HDS-3
Chapter 8 - Culverts

Appendix 8C-79 Rectangular Channel Flow Chart (B=3')

Source: HDS-3
Appendix 8C-80 Rectangular Channel Flow Chart (B=4')

Source: HDS-3
Appendix 8C-81 Rectangular Channel Flow Chart (B=5')

Source: HDS-3
Chapter 8 - Culverts

Appendix 8C-82 Rectangular Channel Flow Chart (B=6')

Source: HDS-3
Appendix 8C-83 Rectangular Channel Flow Chart (B=7')

Source: HDS-3
Chapter 8 - Culverts

Appendix 8C-84 Rectangular Channel Flow Chart (B=8')

Source: HDS-3
Appendix 8C-85 Rectangular Channel Flow Chart (B=9')

Source: HDS-3
Appendix 8C-86 Rectangular Channel Flow Chart (B=10')

Source: HDS-3
Chapter 8 - Culverts

Appendix 8C-87 Rectangular Channel Flow Chart (B=12"

CHANNEL CHART
VERTICAL B = 12 FT.

Source: HDS-3
Appendix 8C-88 Rectangular Channel Flow Chart (B=14’)

Source: HDS-3
Appendix 8C-89 Rectangular Channel Flow Chart (B=16’)

Source: HDS-3
Appendix 8C-90 Rectangular Channel Flow Chart (B=18')

Source: HDS-3
Appendix 8C-91 Rectangular Channel Flow Chart (B=20')

Source: HDS-3
Appendix 8D-1 Recommended Manning's n-Values

<table>
<thead>
<tr>
<th>Type of Conduit</th>
<th>Wall Description</th>
<th>Manning’s n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Pipe</td>
<td>Smooth walls</td>
<td>0.010-0.013</td>
</tr>
<tr>
<td>Concrete Boxes</td>
<td>Smooth walls</td>
<td>0.012-0.015</td>
</tr>
<tr>
<td>Corrugated Metal</td>
<td>2 2/3 by 1/2 inch corrugations</td>
<td>0.022-0.027</td>
</tr>
<tr>
<td>Pipes and Boxes</td>
<td>6 by 1 inch corrugations</td>
<td>0.022-0.025</td>
</tr>
<tr>
<td>Annular or Helical Pipe (n varies Barrel size)</td>
<td>5 by 1 inch corrugations</td>
<td>0.025-0.026</td>
</tr>
<tr>
<td>See HDS5</td>
<td>3 by 1 inch corrugations</td>
<td>0.027-0.028</td>
</tr>
<tr>
<td></td>
<td>6 by 2 inch structural plate</td>
<td>0.033-0.035</td>
</tr>
<tr>
<td></td>
<td>9 by 2 1/2 inch structural plate</td>
<td>0.033-0.037</td>
</tr>
<tr>
<td>Corrugated Metal</td>
<td>2 2/3 by 1/2 inch corrugations</td>
<td>0.012-0.024</td>
</tr>
<tr>
<td>Pipes, Helical Corrugations, Full Circular Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral Rib Metal</td>
<td>Smooth walls</td>
<td>0.011-0.012</td>
</tr>
</tbody>
</table>

Note 1: The Values indicated in this table are recommended Manning’s “n” design values. Actual Field values for older existing pipelines may vary depending on the effects of abrasion, corrosion, deflection and joint conditions. Concrete pipe with poor joints and deteriorated walls may have “n” values of 0.014 to 0.018. Corrugated metal pipe with joint and wall problems may also have higher “n” values, and in addition, may experience shape changes which could adversely effect the general hydraulic characteristics of the culvert.

Note 2: For further information concerning Manning n values for selected conduits consult Hydraulic Design of Highway Culverts, Federal Highway Administration, HDS No. 5, Table 4.

Source: HDS-5
Appendix 8D-2 Entrance Loss Coefficients (K_e), Outlet Control, Full or Partly Full

<table>
<thead>
<tr>
<th>Type of Structure and Design of Entrance</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe, Concrete</td>
<td></td>
</tr>
<tr>
<td>Mitered to conform to fill slope</td>
<td>0.7</td>
</tr>
<tr>
<td>*End-Section conforming to fill slope</td>
<td>0.5</td>
</tr>
<tr>
<td>Projecting from fill, sq. cut end</td>
<td>0.5</td>
</tr>
<tr>
<td>Headwall or headwall and wingwalls</td>
<td></td>
</tr>
<tr>
<td>Square-edge</td>
<td>0.5</td>
</tr>
<tr>
<td>Rounded (radius = D/12)</td>
<td>0.2</td>
</tr>
<tr>
<td>Socket end of pipe (groove-end)</td>
<td>0.2</td>
</tr>
<tr>
<td>Projecting from fill, socket end (groove-end)</td>
<td>0.2</td>
</tr>
<tr>
<td>Beveled edges, 33.7° or 45° bevels</td>
<td>0.2</td>
</tr>
<tr>
<td>Side-or slope-tapered inlet</td>
<td>0.2</td>
</tr>
<tr>
<td>Pipe, or Pipe-Arch, Corrugated Metal</td>
<td></td>
</tr>
<tr>
<td>Projecting from fill (no headwall)</td>
<td>0.9</td>
</tr>
<tr>
<td>Mitered to conform to fill slope, paved or unpaved slope</td>
<td>0.7</td>
</tr>
<tr>
<td>Headwall or headwall and wingwalls square-edge</td>
<td>0.5</td>
</tr>
<tr>
<td>*End-Section conforming and to fill slope</td>
<td>0.5</td>
</tr>
<tr>
<td>Beveled edges, 33.7° or 45° bevels</td>
<td>0.2</td>
</tr>
<tr>
<td>Side-or slope-tapered inlet</td>
<td>0.2</td>
</tr>
<tr>
<td>Box, Reinforced Concrete</td>
<td></td>
</tr>
<tr>
<td>Headwall parallel to embankment (no wingwalls)</td>
<td></td>
</tr>
<tr>
<td>Square-edged on 3 edges</td>
<td>0.5</td>
</tr>
<tr>
<td>Rounded on 3 edges to radius of D/12 or B/12</td>
<td>0.2</td>
</tr>
<tr>
<td>or beveled edges on 3 sides</td>
<td>0.2</td>
</tr>
<tr>
<td>Wingwalls parallel (extension of sides)</td>
<td></td>
</tr>
<tr>
<td>Square-edged at crown</td>
<td>0.7</td>
</tr>
<tr>
<td>Wingwalls at 10° to 25° to barrel</td>
<td></td>
</tr>
<tr>
<td>Square-edged at crown</td>
<td>0.5</td>
</tr>
<tr>
<td>Wingwalls at 30° to 75° to barrel</td>
<td></td>
</tr>
<tr>
<td>Crown edge rounded to radius of D/12 or beveled top edge</td>
<td>0.2</td>
</tr>
<tr>
<td>Square Edge at crown</td>
<td>0.4</td>
</tr>
<tr>
<td>Side-or slope-tapered inlet</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: “End Sections conforming to fill slope,” made of either metal or concrete, are the sections commonly available form manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.

Source HDS-5
8E.1 Riprap Basin

Riprap basins are used for energy dissipation at the outlets of high velocity culverts.

Riprap basin design is based on laboratory data obtained from full-scale prototypical installations. The principal features of riprap basins are as follows:

1. Pre-shaping and lining with riprap of median size, d_{50}.
2. Constructing the floor at a depth of h_s below the invert, where h_s is the depth of scour that would occur in a pad of riprap of size d_{50}.
3. Sizing d_{50} so that $2 < h_s/d_{50} < 4$.
4. Sizing the length of the dissipating pool to be $10(h_s)$ or $3(W_o)$, whichever is larger for a single barrel. The overall length of the basin is $15(h_s)$ or $4W_o$ whichever is larger.
5. Angular rock results are approximately the same as the results of rounded material.
6. Layout details and dimensions are shown on Figure 8E-1.

For high tailwater ($\frac{TW}{d_o} > 0.75$), the following applies:

1. The high velocity core of water emerging from the culvert retains its jet-like character as it passes through the basin.
2. The scour hole is not as deep as with low tailwater and is generally longer.
3. Riprap may be required for the channel downstream of the rock-lined basin.
8E.2 Design Procedures and Sample Problems

The procedure shown below should be used to determine the dimension for a riprap basin energy dissipator for culvert and pipe installations with pipe velocities greater than or equal to 19 feet per second as classified in Section 8.3.2.6. Maximum Outlet Velocity within the Chapter 8 text.

Step 1: Determine input flow parameters: D_e or d_E, V_o, F_r at the culvert outlet

Where:

$d_E = \text{Equivalent depth at the brink} = \sqrt{\frac{A}{2}}$

Note: $d_E = y_e$ in Figure 8E-2

Step 2: Check TW

Determine if $\frac{TW}{d_o} \leq 0.75$

Note: $d_o = d_E$ in Figure 8E-2 for rectangular sections

Step 3 Determine d_{50}

a. Use Figure 8E-2.

b. Select d_{50}/d_E. Satisfactory results will be obtained if $0.25 < d_{50}/d_E < 0.45$.

c. Obtain h_s/d_E using Froude number (F_r) and Figure 8E-2.

d. Check if $2 < h_s/d_{50} < 4$ and repeat until a d_{50} is found within the range.

Step 4: Size basin

a. As shown in Figure 8E-1.

b. Determine length of the dissipating pool, $L_s = 10h_s$ or $3W_o$ minimum.

c. Determine length of basin, $L_B = 15h_s$ or $4W_o$ minimum.

Thickness of riprap: Approach = $3d_{50}$ or $1.5d_{\text{max}}$

Remainder = $2W_o$ or $1.5d_{\text{max}}$
Appendix 8E-1 Energy Dissipation

Step 5: Determine exit velocity at brink (V_B)

a. Basin exit depth, $d_B = \text{critical depth at basin exit}$

b. Basin exit velocity, $V_B = \frac{Q}{W_B d_B}$

c. Compare V_B with the average normal flow velocity in the natural channel (V_d)

Step 6: High tailwater design

a. Design a basin for low tailwater conditions, Steps 1-5.

b. Compute equivalent circular diameter (D_E) for brink area from:

$$A = \frac{\pi D_E^2}{4} = d_o (W_o)$$

c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-4.

Size riprap using HEC -11 "Use of Riprap for Bank Protection."

Step 7: Design Filter

The design filter is necessary unless the streambed material is sufficiently well graded. To design a filter for riprap, use the procedures in Section 4.4 of HEC-11.

Dissipator geometry can also be computed using the "Energy Dissipator" module that is available in the microcomputer program HY8, Culvert Analysis.
Figure 8E-1. Details of Riprap Basin Energy Dissipator
Figure 8E- 2. Riprap Basin Depth of Scour
RIPRAP BASIN

<table>
<thead>
<tr>
<th>DESIGN VALUES (Figure 8E-2)</th>
<th>TRIAL I</th>
<th>FINAL TRIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equi. Depth, d_e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_m/d_e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Froude No., Fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_y/d_e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_y/D_m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2 < h_y/D_m < 4$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASIN DIMENSIONS</th>
<th>FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool length is the larger of:</td>
<td>10b</td>
</tr>
<tr>
<td>3W_e</td>
<td></td>
</tr>
<tr>
<td>Basin length is the larger of:</td>
<td>15b</td>
</tr>
<tr>
<td>4W_e</td>
<td></td>
</tr>
<tr>
<td>Approach Thickness</td>
<td>30b</td>
</tr>
<tr>
<td>Basin Thickness</td>
<td>20b</td>
</tr>
</tbody>
</table>

TAILWATER CHECK

<table>
<thead>
<tr>
<th>Tailwater, TW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent depth, d_e</td>
<td></td>
</tr>
<tr>
<td>TW/d_e</td>
<td></td>
</tr>
</tbody>
</table>

IF $TW/d_e > 0.75$, calculate riprap downstream using Figure 8E-4

$D_e = (4A/\pi)^{0.5}$

DOWNSTREAM RIPRAP (Figure 8E-4)

<table>
<thead>
<tr>
<th>L/D_e</th>
<th>L</th>
<th>V_L/V_e</th>
<th>V_L</th>
<th>D_m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8E-3. Riprap Basin Design Checklist
8E.2.1 Riprap Design for Low Tailwater Condition-Sample Problem

Given:
Box culvert: 8.0 ft by 6.0 ft.
Design discharge \(Q = 800 \) cfs
Supercritical flow in culvert
Normal flow depth \(d_o = \) brink depth \(d_E = 4.0 \) ft
Tailwater depth, \(TW = 2.8 \) ft
Downstream channel velocity = 18 fps

Step 1: **Determine input flow parameters: \(D_o \) or \(d_E \), \(V_o \), \(F_r \), at the culvert outlet**

\[
\begin{align*}
 d_o &= d_E \text{ for rectangular section} \\
 d_o &= d_E = 4.0 \text{ ft.} \\
 V_o &= \frac{Q}{A} = \frac{800}{4.0(8.0)} = 25 \text{ fps} \\
 F_r &= \frac{V_o}{\sqrt{gd_E}} = \frac{25}{\sqrt{32.2(4.0)}} = 2.2 < 3.0
\end{align*}
\]

Step 2: **Check TW:**

Determine if \(\frac{TW}{d_E} < 0.75 \)

\[
\frac{2.8}{4.0} = 0.70 < 0.75
\]

Therefore, \(\frac{TW}{d_E} < 0.75 \), O.K.

Step 3: **Determine \(d_{50} \):**

a. Use Figure 8E-2

b. Try \(d_{50}/d_E = 0.45 \)

\[
d_{50} = \left(\frac{d_{50}}{d_E} \right) d_E = 0.45(4.0) = 1.8 \text{ ft.}
\]

c. Obtain \(h_S/d_E \) using \(F_r = 2.2 \) and line \(0.41 \leq d_{50}/d_E \leq 0.50 \)

\[
h_S/d_E = 1.6
\]
d. Check if $2 < \frac{h_s}{d_{50}} < 4$:

\[
\frac{h_s}{d_{50}} = \frac{6.4}{1.8} = 3.55 \text{ ft.}
\]

$2 < 3.55 < 4$, O.K.

Step 4: Size the basin:

- As shown in Figure 8E-1
- Determine length of dissipating pool, L_S:
 \[L_S = 10h_S = 10(6.4) = 64 \text{ ft.}\]
 \[L_S \text{ min.} = 3W_o = 3(8) = 24 \text{ ft}\]
 Therefore, use $L_S = 64$ ft
- Determine length of basin, L_B:
 \[L_B = 15h_S = 15(6.4) = 96 \text{ ft}\]
 \[L_B \text{ min.} = 4W_o = 4(8) = 32 \text{ ft}\]
 Therefore, use $L_B = 96$ ft
- Thickness of riprap:
 Approach = $3d_{50} = 3(1.8) = 5.4$ ft
 Remainder = $2d_{50} = 2(1.8) = 3.6$ ft

Step 5: Determine V_B:

- d_B = Critical depth at basin exit = 3.30 ft. (assuming a rectangular cross section with width $W_B = 24$ ft.)
 \[Q = \frac{800}{W_B d_B} = 10 \text{ fps}\]
- $V_B = 10$ fps $< V_d = 18$ fps
8E.2.2 Riprap Design for High Tailwater Condition-Sample Problem

Given: Data on the channel and the culvert are the same as Sample Problem 1, except that the new tailwater depth,

\[TW = 4.2 \text{ ft.} \]

\[\frac{TW}{d_o} = \frac{4.2}{4.0} = 1.05 > 0.75 \]

Downstream channel can tolerate only 7.0 fps

Steps 1 through 5 are the same as Sample Problem 8E.2.1.

Step 6: High tailwater design:

a. Design a basin for low tailwater conditions, Steps 1-5 as above:

\[D_{50} = 1.8 \text{ ft, } h_s = 6.4 \text{ ft} \]
\[L_s = 64 \text{ ft, } L_B = 96 \text{ ft} \]

b. Compute equivalent circular diameter, \(D_E \), for brink area from:

\[A = \frac{\pi D_E^2}{4} = d_o(W_o) = 4.0(8.0) = 32 \text{ ft}^2 \]

\[D_E = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4(32)}{\pi}} = 6.4 \text{ ft.} \]

\[V_o = 25 \text{ fps (Sample Problem 8E.2.1).} \]

c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-5.

<table>
<thead>
<tr>
<th>(\frac{L}{D_E})</th>
<th>(L)</th>
<th>(\frac{V_L}{V_o})</th>
<th>(V_L)</th>
<th>(D_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>64</td>
<td>0.59</td>
<td>14.7</td>
<td>1.4</td>
</tr>
<tr>
<td>15 (^2)</td>
<td>96</td>
<td>0.36</td>
<td>9.0</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>128</td>
<td>0.30</td>
<td>7.5</td>
<td>0.4</td>
</tr>
<tr>
<td>21</td>
<td>135</td>
<td>0.28</td>
<td>7.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\(^1\) Use \(W_o = D_E \) in Figure 8E-5.
\(^2\) From Figure 8E-6.
\(^3\) Is on a logarithmic scale so interpolations must be performed logarithmically.

d. Size riprap using HEC 11. The channel can be lined with the same size rock used for the basin. Protection should extend at least 135 ft downstream.

This information is summarized in the worksheet for riprap basin design, Figure 8E-4.
RIPRAP BASIN

<table>
<thead>
<tr>
<th>DESIGN VALUES (Figure 8E-2)</th>
<th>TRIAL 1</th>
<th>FINAL TRIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equi. Depth, d_e</td>
<td>4.0 ft.</td>
<td>4.0 ft.</td>
</tr>
<tr>
<td>D_25/d_e</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>D_{95}</td>
<td>1.80 ft.</td>
<td>1.80 ft.</td>
</tr>
<tr>
<td>Froude No., Fr</td>
<td>2.20</td>
<td>2.20</td>
</tr>
<tr>
<td>h_y/d_e</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>h_y</td>
<td>6.40 ft.</td>
<td>6.40 ft.</td>
</tr>
<tr>
<td>h_y/D_{so}</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>$2 < h_y/D_{so} < 4$</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

BASIN DIMENSIONS

<table>
<thead>
<tr>
<th>Pool length is the larger of:</th>
<th>10 D_9</th>
<th>64</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3W_e$</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin length is the larger of:</td>
<td>15 B_{so}</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>$4W_e$</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Thickness</td>
<td>$3D_{so}$</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Basin Thickness</td>
<td>$2D_{so}$</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

TAILWATER CHECK

- Tailwater, TW: 4.2
- Equivalent depth, d_t: 4.0
- TW/d_t: 1.05

If $TW/d_t > 0.75$, calculate riprap downstream using Figure 8E-4

$$D_t = (4A_t/n)^{2/3}$$

DOWNSTREAM RIPRAP (Figure 8E-4)

<table>
<thead>
<tr>
<th>L/D_9</th>
<th>L</th>
<th>V_t/V_e</th>
<th>V_t</th>
<th>D_{so}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>64</td>
<td>0.59</td>
<td>14.7</td>
<td>1.4</td>
</tr>
<tr>
<td>15</td>
<td>96</td>
<td>0.37</td>
<td>9.0</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>128</td>
<td>0.30</td>
<td>7.5</td>
<td>0.4</td>
</tr>
<tr>
<td>21</td>
<td>135</td>
<td>0.28</td>
<td>7.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure 8E-4. Riprap Basin Design Worksheet, Sample Problem
Figure 8E-5. Distribution of Centerline Velocity for Flow from Submerged Outlets
Figure 8E-6. Riprap Size Versus Exit Velocity

For stone weighing 165 lbs. per cu. ft.
Appendix 8E-1 Energy Dissipation

8E.2.3 Computer Output

The dissipator geometry can be computed using the “Energy Dissipator” module, which is available in FHWA’s HY8, Culvert Analysis microcomputer program. The output of the culvert data, channel input data, and computed geometry using this module are shown below.

<table>
<thead>
<tr>
<th>CURRENT DATE</th>
<th>CURRENT TIME</th>
<th>FILE NAME</th>
<th>FILE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-02-1997</td>
<td>15:23:59</td>
<td>ENERGY3</td>
<td>06-02-1997</td>
</tr>
</tbody>
</table>

CULVERT AND CHANNEL DATA

<table>
<thead>
<tr>
<th>CULVERT NO. 1</th>
<th>DOWNSTREAM CHANNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULVERT TYPE: 8.0 ft X 6.0 ft, BOX</td>
<td>CHANNEL TYPE: IRREGULAR</td>
</tr>
<tr>
<td>CULVERT LENGTH = 300 ft</td>
<td>BOTTOM WIDTH = 8.0 ft</td>
</tr>
<tr>
<td>NO. OF BARRELS = 1.0</td>
<td>TAILWATER DEPTH = 2.8 ft</td>
</tr>
<tr>
<td>FLOW PER BARREL= 400 cfs</td>
<td>TOTAL DESIGN FLOW = 400 cfs</td>
</tr>
<tr>
<td>INVERT ELEVATION = 172.5 ft</td>
<td>BOTTOM ELEVATION = 172.5 ft</td>
</tr>
<tr>
<td>OUTLET VELOCITY = 25 fps</td>
<td>NORMAL VELOCITY = 32 fps</td>
</tr>
<tr>
<td>OUTLET DEPTH = 4.0 ft</td>
<td></td>
</tr>
</tbody>
</table>

RIPRAP STILLING BASIN – FINAL DESIGN

THE LENGTH OF THE BASIN	= 96.3 ft
THE LENGTH OF THE POOL	= 64.2 ft
THE LENGTH OF THE APRON	= 32 ft
THE WIDTH OF THE BASIN AT THE OUTLET	= 8.0 ft
THE DEPTH OF POOL BELOW CULVERT INVERT	= 6.4 ft
THE THICKNESS OF THE RIPRAP ON THE APRON	= 6.6 ft
THE THICKNESS OF THE RIPRAP ON THE REST OF THE BASIN	= 5.0 ft
THE BASIN OUTLET VELOCITY	= 17 fps
THE DEPTH OF FLOW AT BASIN OUTLET	= 6.0 ft
Appendix 8F-1 Handling Weight for Corrugated Steel Pipe

(2\(\frac{3}{4}\)"x\(\frac{1}{2}\)" Corrugations)

<table>
<thead>
<tr>
<th>Inside Diameter In Inches</th>
<th>Specified Thickness In Inches</th>
<th>Approximate Pounds per Linear Foot **</th>
<th>Galvanized</th>
<th>Full-Coated</th>
<th>Full-Coated and invert paved</th>
<th>Full-Coated and Full Painted</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>.052</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.052</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>.052</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>.052</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>17</td>
<td>21</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>.052</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>24</td>
<td>29</td>
<td>35</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>.052</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>36</td>
<td>.052</td>
<td>24</td>
<td>26</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>29</td>
<td>36</td>
<td>44</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>36</td>
<td>43</td>
<td>51</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>42</td>
<td>.052</td>
<td>28</td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>34</td>
<td>42</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>48</td>
<td>.052</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.064</td>
<td>38</td>
<td>48</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>48</td>
<td>58</td>
<td>67</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>54</td>
<td>.054</td>
<td>44</td>
<td>55</td>
<td>66</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>.079</td>
<td>54</td>
<td>65</td>
<td>76</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>60</td>
<td>.079</td>
<td>60</td>
<td>71</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.109</td>
<td>81</td>
<td>92</td>
<td>106</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>66</td>
<td>.109</td>
<td>89</td>
<td>101</td>
<td>117</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>.138</td>
<td>113</td>
<td>125</td>
<td>141</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>72</td>
<td>.109</td>
<td>98</td>
<td>112</td>
<td>129</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>.138</td>
<td>123</td>
<td>137</td>
<td>154</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>78</td>
<td>.109</td>
<td>105</td>
<td>121</td>
<td>138</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>.138</td>
<td>133</td>
<td>149</td>
<td>166</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>84</td>
<td>.109</td>
<td>113</td>
<td>133</td>
<td>155</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>.138</td>
<td>144</td>
<td>161</td>
<td>179</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>90</td>
<td>.109</td>
<td>121</td>
<td>145</td>
<td>167</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>.138</td>
<td>154</td>
<td>172</td>
<td>192</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>96</td>
<td>.138</td>
<td>164</td>
<td>191</td>
<td>217</td>
<td></td>
<td>234</td>
</tr>
</tbody>
</table>

* Lock seam construction only; weights will vary with other fabrication practices.

** For other coatings or linings the weights may be interpolated.

Note: Pipe arch weights will be the same as the equivalent round pipe.
For example: for 42 x 29, 2\(\frac{3}{4}\) x \(\frac{1}{2}\) in Pipe Arch, refer to 36 in diameter pipe weight.
Smooth steel lined CSP weighs approximately 5% more than single wall galvanized.

Source:
Appendix 8F-2 Handling Weight for Corrugated Steel Pipe

(3" x 1" or 125 mm x 25 mm Corrugations)

<table>
<thead>
<tr>
<th>Inside Diameter in Inches</th>
<th>Specified Thickness In Inches</th>
<th>Galvanized</th>
<th>Full-Coated</th>
<th>Full-Coated and invert Paved</th>
<th>Full-Coated and Full Paved</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>0.054</td>
<td>50</td>
<td>66</td>
<td>84</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>61</td>
<td>77</td>
<td>95</td>
<td>149</td>
</tr>
<tr>
<td>60</td>
<td>0.054</td>
<td>55</td>
<td>73</td>
<td>93</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>67</td>
<td>86</td>
<td>105</td>
<td>165</td>
</tr>
<tr>
<td>66</td>
<td>0.054</td>
<td>60</td>
<td>80</td>
<td>102</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>74</td>
<td>94</td>
<td>116</td>
<td>181</td>
</tr>
<tr>
<td>72</td>
<td>0.054</td>
<td>66</td>
<td>88</td>
<td>111</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>81</td>
<td>102</td>
<td>126</td>
<td>197</td>
</tr>
<tr>
<td>78</td>
<td>0.054</td>
<td>71</td>
<td>95</td>
<td>121</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>87</td>
<td>111</td>
<td>137</td>
<td>214</td>
</tr>
<tr>
<td>84</td>
<td>0.054</td>
<td>77</td>
<td>102</td>
<td>130</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>94</td>
<td>119</td>
<td>144</td>
<td>230</td>
</tr>
<tr>
<td>90</td>
<td>0.054</td>
<td>82</td>
<td>109</td>
<td>140</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>100</td>
<td>127</td>
<td>158</td>
<td>245</td>
</tr>
<tr>
<td>96</td>
<td>0.054</td>
<td>87</td>
<td>116</td>
<td>158</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>107</td>
<td>136</td>
<td>169</td>
<td>262</td>
</tr>
<tr>
<td>102</td>
<td>0.054</td>
<td>93</td>
<td>124</td>
<td>158</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>114</td>
<td>145</td>
<td>179</td>
<td>279</td>
</tr>
<tr>
<td>108</td>
<td>0.054</td>
<td>98</td>
<td>131</td>
<td>166</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>120</td>
<td>153</td>
<td>188</td>
<td>295</td>
</tr>
<tr>
<td>114</td>
<td>0.054</td>
<td>104</td>
<td>139</td>
<td>176</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>127</td>
<td>162</td>
<td>199</td>
<td>312</td>
</tr>
<tr>
<td>120</td>
<td>0.054</td>
<td>109</td>
<td>146</td>
<td>183</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>134</td>
<td>171</td>
<td>210</td>
<td>329</td>
</tr>
<tr>
<td>126</td>
<td>0.054</td>
<td>113</td>
<td>183</td>
<td>220</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>141</td>
<td>233</td>
<td>274</td>
<td>400</td>
</tr>
<tr>
<td>132</td>
<td>0.079</td>
<td>148</td>
<td>188</td>
<td>231</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>204</td>
<td>244</td>
<td>287</td>
<td>419</td>
</tr>
<tr>
<td>138</td>
<td>0.079</td>
<td>154</td>
<td>196</td>
<td>241</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>213</td>
<td>255</td>
<td>300</td>
<td>438</td>
</tr>
<tr>
<td>144</td>
<td>0.079</td>
<td>193</td>
<td>267</td>
<td>314</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>223</td>
<td>326</td>
<td>373</td>
<td>517</td>
</tr>
</tbody>
</table>

* Lock seam construction only, weights will vary with other fabrication practices.
** For other coatings or linings the weights may be interpolated.
*** 125 x 25mm may be referred to as 5 x 1in.
and weights approximately 12% less than 3 x 1in.

Note: Pipe arch weights will be the same as the equivalent round pipe.
For example, for 42 x 20, 27/8 x 1/2 in pipe Arch, refer to 36 in. diameter pipe weight.
Smooth steel lined CSP weights approximately 5% more than single wall galvanized.

Source:
Dimensions and Weight of Minimum Size Counterweight

Appendix 8F-3

DIMENSIONS AND WEIGHT OF MINIMUM SIZE COUNTERWEIGHT

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Dimensions (inches)</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>19.5</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>54</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>66</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>72</td>
<td>6</td>
<td>48</td>
</tr>
</tbody>
</table>

WEIGHT OF CONCRETE @ 150 LBS. PER CU. FT.

A = 6"
B = D / 2 + 12"
C = D + 12"
D = PIPE DIAMETER

Source:
Appendix 8F-4
Diameter Dimensions and $D^{2.5}$ Values for Structural Plate Corrugated Circular Pipe
(9" x 2 ½" Aluminum Corrugations)

<table>
<thead>
<tr>
<th>Diameter (feet)</th>
<th>$D^{2.5}$</th>
<th>Plates per Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Actual</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>6.42</td>
<td>104.4</td>
</tr>
<tr>
<td>7.0</td>
<td>6.93</td>
<td>126.4</td>
</tr>
<tr>
<td>7.5</td>
<td>7.44</td>
<td>151.0</td>
</tr>
<tr>
<td>8.0</td>
<td>7.96</td>
<td>178.8</td>
</tr>
<tr>
<td>8.5</td>
<td>8.46</td>
<td>208.2</td>
</tr>
<tr>
<td>9.0</td>
<td>8.97</td>
<td>241.0</td>
</tr>
<tr>
<td>9.5</td>
<td>9.48</td>
<td>276.7</td>
</tr>
<tr>
<td>10.0</td>
<td>9.99</td>
<td>315.4</td>
</tr>
<tr>
<td>10.5</td>
<td>10.50</td>
<td>357.2</td>
</tr>
<tr>
<td>11.0</td>
<td>11.01</td>
<td>402.2</td>
</tr>
<tr>
<td>11.5</td>
<td>11.52</td>
<td>450.4</td>
</tr>
<tr>
<td>12.0</td>
<td>12.04</td>
<td>503.0</td>
</tr>
<tr>
<td>12.5</td>
<td>12.54</td>
<td>556.9</td>
</tr>
<tr>
<td>13.0</td>
<td>13.05</td>
<td>615.2</td>
</tr>
<tr>
<td>13.5</td>
<td>13.57</td>
<td>678.3</td>
</tr>
<tr>
<td>14.0</td>
<td>14.08</td>
<td>743.9</td>
</tr>
<tr>
<td>14.5</td>
<td>14.59</td>
<td>813.1</td>
</tr>
<tr>
<td>15.0</td>
<td>15.10</td>
<td>886.0</td>
</tr>
</tbody>
</table>

Source:
Chapter 8 - Culverts

Appendix 8F-5

Geometric Properties and Critical Flow Factors for Circular Conduits Flowing Full and Partly Full

<table>
<thead>
<tr>
<th>D</th>
<th>f</th>
<th>W</th>
<th>K</th>
<th>L</th>
<th>G</th>
<th>C</th>
<th>a</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>.00</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>1.0</td>
<td>.02</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>1.5</td>
<td>.04</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>2.0</td>
<td>.08</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>2.5</td>
<td>.16</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>3.0</td>
<td>.32</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>3.5</td>
<td>.64</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
<tr>
<td>4.0</td>
<td>1.28</td>
<td>71.74</td>
<td>2.054</td>
<td>2.036</td>
<td>2.043</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
<td>2.039</td>
<td>2.036</td>
<td>2.039</td>
<td>2.043</td>
<td>2.036</td>
</tr>
</tbody>
</table>

Source: VDOT Drainage Manual
Appendix 8F-6 Velocity Head and Resistance Computations Factors for Circular Conduits Flowing Full and Partly Full

Table 3. -- Velocity head and resistance computation factors for circular conduits flowing full and partly full

<table>
<thead>
<tr>
<th>(A) Relative depth d/D</th>
<th>(B) Relative velocity head aV^2/2gD</th>
<th>(C) Manning Eq. resistance computation factor K_c</th>
<th>(D) Darcy Eq. resistance computation factor K_f</th>
<th>(A) Relative depth d/D</th>
<th>(B) Relative velocity head aV^2/2gD</th>
<th>(C) Manning Eq. resistance computation factor K_c</th>
<th>(D) Darcy Eq. resistance computation factor K_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.02520</td>
<td>4.662</td>
<td>0.02520</td>
<td>0.85</td>
<td>0.03071</td>
<td>4.390</td>
<td>0.02532</td>
</tr>
<tr>
<td>0.99</td>
<td>0.02539</td>
<td>4.923</td>
<td>0.02371</td>
<td>0.85</td>
<td>0.03134</td>
<td>4.470</td>
<td>0.02579</td>
</tr>
<tr>
<td>0.98</td>
<td>0.02544</td>
<td>4.174</td>
<td>0.02365</td>
<td>0.83</td>
<td>0.03201</td>
<td>4.560</td>
<td>0.02632</td>
</tr>
<tr>
<td>0.97</td>
<td>0.02565</td>
<td>4.104</td>
<td>0.02301</td>
<td>0.82</td>
<td>0.03272</td>
<td>4.657</td>
<td>0.02688</td>
</tr>
<tr>
<td>0.96</td>
<td>0.02589</td>
<td>4.061</td>
<td>0.02298</td>
<td>0.81</td>
<td>0.03348</td>
<td>4.764</td>
<td>0.02750</td>
</tr>
<tr>
<td>0.95</td>
<td>0.02618</td>
<td>4.037</td>
<td>0.02294</td>
<td>0.80</td>
<td>0.03426</td>
<td>4.878</td>
<td>0.02816</td>
</tr>
<tr>
<td>0.94</td>
<td>0.02648</td>
<td>4.028</td>
<td>0.02287</td>
<td>0.79</td>
<td>0.03510</td>
<td>5.004</td>
<td>0.02888</td>
</tr>
<tr>
<td>0.93</td>
<td>0.02683</td>
<td>4.033</td>
<td>0.02296</td>
<td>0.78</td>
<td>0.03598</td>
<td>5.137</td>
<td>0.02963</td>
</tr>
<tr>
<td>0.92</td>
<td>0.02720</td>
<td>4.046</td>
<td>0.02310</td>
<td>0.77</td>
<td>0.03692</td>
<td>5.282</td>
<td>0.03045</td>
</tr>
<tr>
<td>0.91</td>
<td>0.02761</td>
<td>4.071</td>
<td>0.02330</td>
<td>0.76</td>
<td>0.03790</td>
<td>5.438</td>
<td>0.03133</td>
</tr>
<tr>
<td>0.90</td>
<td>0.02806</td>
<td>4.105</td>
<td>0.02353</td>
<td>0.75</td>
<td>0.03894</td>
<td>5.605</td>
<td>0.03226</td>
</tr>
<tr>
<td>0.89</td>
<td>0.02852</td>
<td>4.145</td>
<td>0.02380</td>
<td>0.74</td>
<td>0.04004</td>
<td>5.787</td>
<td>0.03328</td>
</tr>
<tr>
<td>0.88</td>
<td>0.02902</td>
<td>4.195</td>
<td>0.02412</td>
<td>0.73</td>
<td>0.04120</td>
<td>5.981</td>
<td>0.03436</td>
</tr>
<tr>
<td>0.87</td>
<td>0.02953</td>
<td>4.251</td>
<td>0.02448</td>
<td>0.72</td>
<td>0.04242</td>
<td>6.188</td>
<td>0.03550</td>
</tr>
<tr>
<td>0.86</td>
<td>0.03011</td>
<td>4.317</td>
<td>0.02487</td>
<td>0.71</td>
<td>0.04371</td>
<td>6.411</td>
<td>0.03673</td>
</tr>
</tbody>
</table>

Source:
DEPARTMENT OF TRANSPORTATION
LOCATION AND DESIGN
HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

LOCATION
Project:
Route:
PPMS:
Station:
City/County:
Waterway:

PREPARED BY
Name:
Organization:
Date:

1. Type and size of structure ___________________________ Length __________
 Invert in ____ out ____ Height of cover ______ Drainage Area ______
 Design Discharge ______ Design Frequency ______ Design Headwater Elev. ______
 100-yr Discharge ______ 100-yr Headwater Elev. ______
 OHW elevation ______
 Outlet Protection ____________________________

2. Temporary structures for construction ____________________________

3. Applicable flood plain management criteria:
 Note: Use ONLY the one statement that is applicable and erase all the rest, including this
 instruction and the FEMA delineation description information.

For project within a FEMA delineated floodplain:

FEMA regulates flood level, flood velocity, and flow distribution and this project is within
FEMA community panel number ______ and Zone _____. This project complies with
FEMA requirements because there will be no increase in flood levels, velocities or flow
distribution. A copy of an excerpt from the aforementioned map panel showing the crossing
site has been included.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within
FEMA community panel number ______ and Zone _____. This project complies with
FEMA requirements because a bridge/culvert will be replaced with a hydraulically equivalent
replacement structure. A copy of an excerpt from the aforementioned map panel showing the
crossing site has been included.
For project permits in a FEMA floodplain carrying a Zone A (or Zone X) designation that does not have base flood elevations. In such instances, an increase in 100-year flood level not exceeding one foot is acceptable.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: __________ and Zone A (or X). This project complies with FEMA requirements because there will be no more than a one foot increase in flood levels, velocities and flow distribution will not be changed significantly. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

For projects not within a FEMA floodplain, include the following statement:

FEMA regulates flood level, flood velocity and flood distributions and this project is not within a designated or delineated FEMA floodplain. The project complies because there are no FEMA requirements applicable within the project area.

4. EROSION AND SEDIMENT CONTROL
 An erosion and sediment control plan will be prepared and implemented in compliance with the Erosion and Sediment Control Law, the Erosion and Sediment Control Regulations, and VDOT’s Annual Erosion and Sediment Control Standards and Specifications approved by the Department of Conservation and Recreation.

5. STORMWATER MANAGEMENT
 Design of this project will be in compliance with the Stormwater Management Act, the Stormwater Management Regulations, and VDOT’s Annual Stormwater Management Standards and Specifications approved by the Department of Conservation and Recreation.

6. COUNTERSINKING AND MULTIPLE BARRELL CULVERTS

Note: Use ONLY the statements that are applicable and erase all the rest.

The upstream and downstream inverts of culverts with diameters greater than 24” (or equivalent) will be countersunk a minimum of 6” below the stream bed.

The upstream and downstream inverts of culverts with diameters equal to or less than 24” (or equivalent) will be countersunk a minimum of 3” below the stream bed.

At least one barrel of a multiple barrel culvert structure will be countersunk a minimum of 6” for a diameter greater than 24” (or equivalent) or a minimum of 3” for a diameter equal to or less than 24” (or equivalent).

The width of the countersunk culvert barrel(s) receiving the low flow is approximately the width of the normal stream bed.
DEPARTMENT OF TRANSPORTATION
LOCATION AND DESIGN
HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

Low flow design measures have been implemented for multiple barrel culverts in which all barrels will be countersunk.

Culverts on bedrock will be countersunk a minimum of 3” below the stream bed.

Culverts on bedrock will be countersunk at the upstream end a minimum of 3” and at the downstream end stone step pools, low rock weirs or other measures will be constructed.

Countersinking of the culverts is not practicable due to ___________________________ (See IIM-214.2 Section 4). See attached supporting documentation.

7. IMPACT STATEMENT

__

__