External Post-Tensioning for Full-Depth Precast Deck Panels

Prepared for 2012 Virginia Concrete Conference
Information presented herein pertains to proprietary products.
Today’s Presentation

• Full-Depth Precast Decks - Current Industry Practice

• The AccelBridge Systems - Construction / Engineering
The Search for an Ideal ABC System

SPMTs

Slide-In / Float-In

Full-Depth Precast Decks

Segmental

ABC Technologies

Foundation and Wall Elements

Rapid Embankment Construction

Structure Placement Methods

PBES
Full-Depth Precast Decks

Full depth precast deck system advantages:

- Uses standard girder shapes
- Doesn’t require special equipment
- Relatively simple technology

I-287 Cross Westchester Expressway, New York

- Value engineering
- A+B project
- Minimize field labor
- 300,000 sq ft of precast deck
Full-Depth Precast Panels: Current Practice

Shim pack to support panel
Full-Depth Precast Panels: Current Practice

- Duct Coupling
- Durability Concerns

- Extensive Duct Work
- Panel Alignment

- CIP joint field works
- Durability concerns
Full-Depth Precast Panels:

Attempts to Eliminate Deck PT Anchorage Tube Connection

- Unreliable grouted joint interfaces

UHPC (Ultra-High Performance Concrete)

- Very expensive
- Demanding on workmanship

No compression across deck joints = Durability Concerns
Full-Depth Precast Panels: AccelBridge

Goal Achieved:
Maintaining compression across deck joints without PT in the panels

<table>
<thead>
<tr>
<th>Simplicity</th>
<th>Durability</th>
<th>Speed</th>
<th>Cost</th>
<th>Current system</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PT ducts in panels</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>400+ pcs</td>
</tr>
<tr>
<td>No grouted joints</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>20 joints</td>
</tr>
<tr>
<td>No duct couplers</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>400+ couplers</td>
</tr>
<tr>
<td>Save materials</td>
<td></td>
<td></td>
<td>■</td>
<td>12,000 lbs PT or two girder lines</td>
</tr>
</tbody>
</table>

(Comparison from example bridge: 43 ft wide, 105 ft – 105 ft span)
The AccelBridge Systems

AccelBridge is a patented technology consisting of four systems:

- **AccelNP**: Steel girders - no post-tensioning
- **AccelPB**: Concrete girders with tensioned rods at pier
- **AccelPG**: Concrete girders with post-tensioning in the girders
- **AccelPD**: Concrete tub girders with external post-tensioning

Simple construction with proven technologies.
AccelPG System

- No internal deck post-tensioning
- Deck compression is provided by PT internal to precast concrete girders (no coupling, less duct work, more efficient girder)
- System is very similar to typical post-tensioned precast girders, but with an innovative construction sequence
AccelPG System

Principles

Dual function of girder post-tensioning:
- Longitudinal component provides deck compression
- Vertical component (deviation force) helps the girder resist load

Very effective use of PT, saving girder materials
• Construct substructures
• Erect girders
Leave a small gap between girders at pier
Erect all deck panels
AccelPG System - Construction

Grout Pockets in End Panels
AccelPG System - Construction

Stress girder post-tensioning tendons
• Grout haunch and shear connectors for all remaining panels.
• Finish diaphragms at abutments and pier
AccelP_G System - Advantages

Conventional Full Depth Precast
- 6 girder lines
- 360 duct couplers
- 18 tendons (11,340 lbs)

AccelBridge
- 4 girder lines
- 8 duct couplers
- 8 tendons (11,340 lbs)
AccelNP System

- Precast deck with steel girders
- Precompression of precast deck is provided by jacking against steel girders
- Best with NSBA simple for dead load and continuous for live load detail
- Can be used for deck replacement reusing existing girders
Accel^{NP} System

Use Jacking Frame to Apply Deck Compression

Jack Against End Panels

Precast deck panel at this end is composite to the girder

Precast deck panels in between is not composite to the girder at time of jacking

Precast deck panels at both ends of the bridge is composite to the girder

Precast deck panels in between is not composite to the girder at time of jacking

- Jack and Jacking frame
- Steel girder
- Top flange splice plate

ABC Made Simple.
AccelNP System

Simple span for dead load, continuous for live load layout:

► **Jacking helps the girder resist load**
AccelNP System – Pier Connection

Top Flange Splice for Dead Load

Bottom Flange Grouted Splice for Live Load (Modified NSBA)
AccelNP System – Construction

Erect Girders

Top Flange Splices
AccelN_P System – Construction

Place Deck Panels

Space to Place Jacks
AccelNP System – Construction

Perform Jacking Operations

Grout End Panel

Jacks
AccelNP System – Construction

Place CIP Pour Backs prior to Removing Jacks
Accel^{NP} System – Construction

- Grout all panels
- Remove Jacks and Complete Closure Pour
- Bottom Flange Grouted Splice at Pier
Alternative Jacking method

- Use jacking frame welded to steel girder
- Eliminate closure pour
AccelNP System – Advantages

Conventional Full Depth Precast
- 22 x 4-0.6” PT (13,860 lbs)
- 440 duct couplers

AccelBridge
- No PT (maintains same deck compression)
- No duct couplers

Also applicable to deck replacement of existing bridges.
AccelPB System

- Typical precast prestressed concrete girders
- Two or more spans
- Deck compression provided by tensioning rods at pier
Force in the tensioned rods become deck compression

Eccentricity creates negative moment, helps the girder

Tensioning rods at pier
AccelPB System - Construction

Erect girders

PT Bars Details at Piers
AccelPB System - Construction

Place Deck Panels
AccelPB System - Construction

Grout End Panels
AccelPB System - Construction

Stress PT Bars at Piers
Grout Haunch and Shear Connectors for All Remaining Panels.
AccelPB System - Advantages

Conventional Full Depth Precast
- 18 x 4-0.6” PT Tendons (11340 lbs)
- 360 duct couplers

AccelBridge
- 12 x 1 \(\frac{3}{4}”\) dia threaded rod (1150 lbs)
- No duct couplers
- Girder strand savings
AccelPD System

- Precast deck with external post-tensioning inside Precast Tub girders
- An economical alternate to segmental box girder
- Combines the best from two proven technologies:
 - Concrete segmental bridges with external post-tensioning
 - Full depth precast deck

Deck PT anchored at the end segment provide the compression force

Deviation force produced by deck PT assists the girder in resisting load

Deck PTs exit end segment and become external
AccelPD System

- **Longitudinal PT force becomes deck compression**
- **Vertical PT deviation force helps the girder resist load**
- **PT is anchored on the deck end panel, which can move relatively to the girder.**
- **Post-tensioning tendon**
AccelPD System - Construction

Erect Girders
Install PT and Place End Panels
Accel^{PD} System - Construction

- Install All Deck Panels
- Stress PT
- Grout all pockets and haunches
AccelP_D System - Advantages

Segmental
- Expensive formwork
- Expensive erection system
- Special construction experience required

AccelP_D
- No expensive formwork
- Conventional erection
- No special construction experience required
AccelBridge Applications

The AccelBridge Systems are extremely versatile:

- U- and I-girder shapes
- Steel and concrete girders
- New construction and deck replacements
- Single and multiple spans

<table>
<thead>
<tr>
<th></th>
<th>Spans</th>
<th>Construction</th>
<th>Girders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Multi</td>
<td>New</td>
</tr>
<tr>
<td>AccelPD</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>AccelPG</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>AccelPB</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>AccelNP</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>
Match-Cast Joints

The match cast method, popular in segmental construction, is an ideal solution for full depth precast deck

- Simplified long-line match casting method
 - “Flat” casting
 - Maximum deck curvature only results in <2mm gap at joints
 - Segmental construction typically allows 3mm epoxy joints.

- MODOT’s very successful example of Nemo Bridge
 (construction by Columbia Curb & Gutter)

Figure 1: Casting Bed (Every other 10’ section has concrete poured burlap curing mats on it and the others with green rebar and blockouts showing are waiting to be match cast.)
Match-Cast Joints

Step 1 - Cast every other segment with bulkheads

Step 2 – Match cast the remaining segments
Engineering Topics

- Need to consider camber due to stressing the deck (after deck placement)

- Girder Stress Distribution
The deck is very thin in the vertical direction -- its stability must be ensured under such a large compression force.

Therefore:

Checking deck stability is one of the most important tasks in the design of the AccelBridge systems.

Theory:

- Gravity force provides the stabilizing force – buckling of the deck has to overcome the gravity force first
- The deck stability shall consider bridge profile geometry and construction tolerance.
Engineering Topics: Deck Stability

Potential destabilizing effects from bridge vertical profiles:

[Diagram showing forces and curvatures]

Potential destabilizing effects from construction tolerance:

[Diagram showing forces and tolerances]
Engineering Topics: **Deck Stability**

Level 1 – Point B unloads
Level 2 – Point C unloads

![Graph showing reaction and displacement at various stress levels.](image-url)
Engineering Topics: Deck Stability

Engineering Evaluation Results:
Typically, a safety factor of two against buckling can be readily achieved.

However, hold-down devices can provide additional safety margin:
The AccelBridge Advantage: *Durability*

Typical Deck Internal PT
- Joints and couplers are always the “weak links”
- Chloride can penetrate through joints and couplers

AccelBridge
- PT ducts are away from deck and are well protected (AccelPG and AccelPD)
- No PT ducts (AccelNP and AccelPB)

Extremely Durable Deck System
- Precast and cured in shop environment
- Can provide zero tension in the deck
- No weak spots (no PT, no coupler in the deck)
The AccelBridge Advantage: Deck Replacement

- All four AccelBridge systems can accommodate future deck replacement

- Future deck replacement for AccelNP, AccelPB and AccelPD can follow the same sequence as for their original construction

- Future deck replacement for AccelPG uses a jacking method similar to AccelNP
The AccelBridge Advantage

Field Labor Minimized

No Complicated Equip.

Deck Panels Simplified

Durability Enhanced
The AccelBridge Advantage

AccelBridge

Improves constructability; less field labor, less risk.

AccelBridge

Offers an extremely durable deck system.

AccelBridge

Saves money -- both upfront and over the bridge lifecycle.

AccelBridge = ABC Made Simple.
Put AccelBridge to work for you.

Contact us at:
Eddie He, PE, SE, PhD, LEED AP
Phone: 312.952.3071
E-mail: info@accelbridge.com

Information presented herein pertains to proprietary products.