Precast Prestressed Concrete Beams and Girders
For Virginia Highway Bridges
Rodney T. Davis, PhD, PE
Virginia Transportation Research Council

Economical Bridge Designs Using Normal Weight Concrete
Virginia PCBT's set as simple spans, CIP deck

- Span to beam depth h ratio of 18 to 21, with 20 being about optimal
- Beam spacing up to about 10 feet
- Beam Concrete 8000psi
- Beam web width 7 inches
- Equivalent of 0.8 ½” dia. strands per inch of beam depth h
- Deck concrete 4000psi
- Continuity diaphragms and integral backwalls

Economical Bridge Designs
Virginia PCBT's set as simple spans, CIP deck

- Span to beam depth h ratio greater than 20
- Beam spacing of about 10 feet maintained with span to depth ratios up to 24 requires LW deck
- Beam Concrete 8000psi (normal weight unless reduced superstructure weight is needed, reduced modulus and reduced self-weight offset in pretensioned beams)
- Lightweight deck concrete up to 5000psi and down to 110pcf
- Add beam lines only if necessary

Spliced Girder Superstructures

- Use typical spliced girder construction for spans from 170 feet to 380 feet
- Try span to girder depth h ratios of 21 at the pier and 29 near midspan
- Girder concrete strength 8000psi
- Use individual splices with moment capacity as reinforced concrete section
- Use conventional 4000psi CIP deck
- Use 4 or more tendons, spread them out in web
- Need P/T duct specification similar to Florida DOT, but we don't need nor want the plastic duct

Spliced Girder Superstructures

- Girder weight has important influence as span length increases
- Modify section
- Reduce beam and deck densities
- Add girder lines
- Increase girder strength last option
- Pier segments use custom form
- No massive elements in girders
Properties for Design

Tensile Strength
- Lightweight concretes are exhibiting about 7/8th of the tensile strength of the equivalent normal weight concrete.
- Slower cure results in higher tensile strength relative to the compressive strength.

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting Tensile</td>
<td>0.090 f_{ct}</td>
<td>0.080 f_{ct}</td>
</tr>
<tr>
<td>Beam Rupture</td>
<td>0.085 f_{ct}</td>
<td>0.075 f_{ct}</td>
</tr>
<tr>
<td>Tension Field</td>
<td>0.069 f_{ct}</td>
<td>0.055 f_{ct}</td>
</tr>
</tbody>
</table>

Modulus of Elasticity
- Modulus of elasticity of lightweight concrete is dependent on the volume of lightweight aggregate, and the paste density.
- Modulus of elasticity of normal weight concrete is dependent on the type of aggregate, and the paste density.

<table>
<thead>
<tr>
<th>Interval</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Transfer</td>
<td>4200-5600 ksi</td>
<td>3100-3300 ksi</td>
</tr>
<tr>
<td>In Service (VA)</td>
<td>5000-6500 ksi</td>
<td>3300-3500 ksi</td>
</tr>
<tr>
<td>Dried at 50% RH</td>
<td></td>
<td>3100 ksi</td>
</tr>
</tbody>
</table>

Creep Coefficient for P/S plus Self-weight
- Beam concretes using slag (and presumably fly ash) show a marked increase in early age creep as well as strength when cured at lower temperatures (less than 135 degF).
- Range of values in the table are for peak concrete temperatures during curing from 130 to 165 degF.
- Creep from prestress transfer and self-weight is complete in 7 to 60 days depending on curing regimen.

<table>
<thead>
<tr>
<th>Interval</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer to day 7 - 60</td>
<td>0.25 - 1.2</td>
<td>0.25 - 1.2</td>
</tr>
</tbody>
</table>

Autogenous Shrinkage of Beam Concrete
- Use of lightweight aggregates is known to reduce autogenous shrinkage and its associated stresses.
- This is a difficult strain to measure as it is occurring during the accelerated curing of the beams.
- Vertical cracking of beams during cooling and before prestress transfer indicates that the beam has shortened during the curing process.
- Reduces camber at transfer.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microstrain</td>
<td>about 250</td>
<td>lower</td>
</tr>
</tbody>
</table>

Mix Design

Beam Concretes

<table>
<thead>
<tr>
<th>Constituent</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>450 pcy</td>
<td>480 pcy</td>
</tr>
<tr>
<td>Slag</td>
<td>300 pcy</td>
<td>320 pcy</td>
</tr>
<tr>
<td>Water</td>
<td>232 pcy</td>
<td>248 pcy</td>
</tr>
<tr>
<td>w/c ratio</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>1050 pcy</td>
<td>1150 pcy</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>2100 pcy</td>
<td>1050 pcy</td>
</tr>
</tbody>
</table>

Total Shrinkage of Beam Concrete
- Lightweight concrete exhibited more shrinkage than the normal weight concrete after leaving the form.
- Beams cured at lower temperature showed more shrinkage after leaving the form than beams cured above 150 degF.

<table>
<thead>
<tr>
<th>Total Shrinkage Strain</th>
<th>NWC</th>
<th>LWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microstrain</td>
<td>about 350</td>
<td>about 350-450</td>
</tr>
</tbody>
</table>
Problem Areas - Precast Prestressed Beams and Girders

- Beam end cracking at transfer of prestress
- Thermal stress induced web cracking and cold joints
- Creep and shrinkage, camber growth

Upper and Lower Strut-and-Tie Models for Beam End Design

Sectional Analysis at h

Working Stress for Vertical Beam End Reinforcement

- 22ksi for normal weight concrete in non-aggressive environments
- 19ksi for lightweight concrete
- 16ksi for aggressive environments, spliced girder segment ends

Design Forces for Beam End Reinforcement

Using 0.5" dia. 270ksi Strand

Using 0.6" dia. 270ksi Strand
Curing Method of Precast Prestressed Beams

- Higher temperature, shorter duration
 - Lower final tensile and compressive strength
 - Little creep and less shrinkage after prestress transfer
 - Improved production
- Lower temperature, longer duration
 - Higher final tensile and compressive strength
 - More creep and shrinkage after prestress transfer
 - Camber growth may be unacceptable for LW beams, and will not meet 50% camber growth spec

Fabrication of Beams

- Casting should proceed quickly and continuously
- Upon initial set enclosure temperature should be ramped at a rate such that the form temperature does not exceed the concrete temperature by more than a few degrees
- Beam temperature should be kept constant until transfer strength has been achieved
- Strands should be cut as quickly as possible after steam has been stopped
- Best results have been achieved when ramp rate is slower, and transfer strengths are above 6400psi

Rte. 33 over the Mattaponi River at West Point, Virginia