VIRGINIA’S EXPERIENCE WITH HPC FOR BRIDGES
Celik Ozyildirim, Ph.D., P.E.
Virginia Transportation Research Council
VDOT
Virginia Concrete Conference, March 7, 2007

Outline

• HPC
• Field applications
• Lessons learned

HPC

• Enhanced durability
• High strength
• High workability
• Low heat generation
• Crack control
More Durable Concrete!

- **Low permeability** resists infiltration of liquids
 - Water
 - Chlorides
 - Sulfates
- **Air entrainment** for resistance to freezing and thawing

Durability vs. High Strength

- High strengths may be simply a by-product of designing for low permeability
 - Supplementary cementitious materials
 - Binary, ternary systems
 - Low w/cm

Early HPC Use in Virginia

- Early efforts with supplementary cementitious materials
 - 1950s: fly ash in Louisa sidewalks
 - 1970s: Class F fly ash in bridge structures
 - 1980s: slag in Route 143 bridge over Hampton River
- Rapid chloride permeability test (1980s)
 - Verified that pozzolans and slag provide low permeability
LMC and Silica Fume

- Low permeability overlays
 - 1974: Latex-modified concrete (LMC)
 - 1980s: Silica fume

ASR Requirement

- 1992: maximum cement alkali content set at 0.40% (recently increased to 0.45%)
- If exceeded, pozzolans or slag are required
- Low permeability concrete obtained as a by-product, even at conventional w/cm ratios (0.40-0.45)

High Strength Concrete

- Reduce w/cm **below 0.40** to obtain high strength concretes (HSC)
 - 8,000 to 10,000 psi beams (w/cm around 0.30)
HPC Bridge Beams

- Route 40, 1995
- First specification of 8,000 psi concrete
- 1500 coulombs
- w/cm = 0.32

Rte 40

Curing
HPC Bridge Beams

- Richlands, 1997
- First specification of 10,000 psi concrete
- 1,500 coulombs
- w/cm = 0.28

Fibers

- To control cracking
 - 1970s: Steel fibers
 - 1990s: Synthetic fibers (8 to 9 lb/yd³ structural fibers)

Heat Control

- Mass concrete
 - Control maximum temperature
 - Control maximum temperature differential
 - Used 75% slag
Lightweight HPC (LWHPC)

- Reduced dead load
- Low permeability
- Increased strain capacity
- Reduced elastic modulus
- Internal curing

LWHPC

- 2001: Route 106 over the Chickahominy River.
- Beams: 8,000 psi, 1,500 coulombs
- Deck: 4,000 psi, 2,500 coulombs

LWHPC

- Route 33 bridges over the Mattaponi and Pamunkey Rivers
 - Longer spans (145 ft simple span, or 240 ft with spliced girders)
Self-Consolidating Concrete (SCC)

- 2001: Precast arch bridge
 - 5,000 psi, 2,500 coulomb

- 2005: 8 Bulb-T beams
 - 8,000 psi, 1,500 coulomb

SCC Beams – Rte 33 (2005)

Smooth Surface Finish
Lessons Learned - Partnership

- Agency-industry partnership is essential
 - Set achievable goals. Focus on incremental improvements rather than great leaps.
 - Try new materials and methods: need technology transfer.
Lessons Learned - Cracking

- **Cracking concern:**
 - Avoid high-strength concrete if possible. It is more brittle than conventional concrete.
 - Cure properly: temperature and moisture control.
 - Replace cement with pozzolans or slag for slow early strength development and reduction in heat rise.

Lessons Learned - Cost

- **Cost!** Be patient. Benefits are there.
 - Initial cost may increase when using HPC
 - More expensive materials
 - Misconceptions and experimentation
 - BUT, HPC is more durable (longer lasting)
 - Would be cheaper based on life-cycle cost
- Cost analysis must include:
 - All phases of production (including labor)
 - Possible structural design considerations (i.e.: longer spans, smaller members/foundations)
- Competition will also lead to reduced costs.

Lessons Learned - QC

- **Quality control** becomes even more important with HPC
 - Test for the specific properties sought
 - Check sensitivity to variations in ingredients
- Determine in-place strength
 - temperature-matched curing
 - maturity method
Lessons Learned - Specifications

• Move from prescription-based specifications to end-result specifications (ERS) that
 – Address important properties
 – Permit innovation in:
 • Ingredients
 • Mixture proportions

Conclusions

• HPC = High workability, high strength, low permeability
• Much learning has taken place
 – Importance of industry partnerships
 – Focus on incremental improvements
 – Life-cycle cost analysis
 – Performance-based specifications
 – Enhanced quality control and testing
 – Improved construction practices