Concrete Bridge Deck Cracking

Khossrow Babaei, P.E.
VDOT, Northern Virginia District
March 2007

Problem

- Cracking of newly constructed decks
- Risk of concrete deterioration
- Shortened bridge deck service life

Types of Cracking

- Random
- Transverse
- Longitudinal
- Diagonal
- Pattern
Full Depth Transverse Cracking

Bridge Deck Deterioration

How to Avoid the Problem?
- Seal Cracks
- Prevent Cracking
Plastic Settlement Cracking

- **Time of Cracking:**
 - During Bleeding
- **Type of Cracking:**
 - Over Topmost Bar
- **Cause of Cracking:**
 - Concrete Settles between Bars

Cracking due to Plastic Settlement

Causes of Plastic Settlement Cracking

- Shallow Cover Depth
- High Slump
- Large Bar Size
Transverse Crack over Transverse Bar

Thermal Shrinkage Cracking

- Time of Cracking:
 - During Curing
- Type of Cracking:
 - Transverse, Full Depth
- Cause of Cracking:
 - Deck Cools Down & Shrinks, Beams Restrains

<table>
<thead>
<tr>
<th>Slump (in)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8</td>
<td>80.4</td>
<td>87.8</td>
<td>92.2</td>
</tr>
<tr>
<td>1</td>
<td>60.0</td>
<td>71.0</td>
<td>78.1</td>
</tr>
<tr>
<td>1 1/2</td>
<td>18.6</td>
<td>24.5</td>
<td>45.6</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>1.0</td>
<td>14.1</td>
</tr>
</tbody>
</table>
Curing Concrete Deck

Deck During Cure

Deck Restrained by Longitudinal Girders
Control of Thermal Shrinkage Cracking

- Differential Deck/Beam Temperature During Cure:
 - $\Delta T_{\text{Max}} \approx 40 \, ^\circ F$
 - $\Delta T_{\text{Safe}} \approx 22 \, ^\circ F$
- Watch for Decks During Cold Weather Cure

Methods to Minimize Thermal Shrinkage Cracking

- Reduce heat of hydration:
 - Use less cement.
 - Replace cement with fly ash or slag.
 - Use Type II cement.
 - Use cement from a proven source.
 - Use retarders.
Methods to Minimize Thermal Shrinkage Cracking

- Cold Weather Precautions:
 - Do not overinsulate deck:
 - Temp. 55 to 75°F
 - Enclose & heat beams
 - Temp. 55 to 75°F

Cold Weather Cure; Deck under Insulation

Heating Deck from Abutment
Drying Shrinkage Cracking

- **Time of Cracking:**
 - After Curing
- **Type of Cracking:**
 - Transverse, Full Depth
- **Cause of Cracking:**
 - Deck Dries & Shrinks, Beams Restrained
Deck Shrinkage Restrained by Longitudinal Girders

Transverse Cracks

Control of Drying Shrinkage Cracking

- Allowable Specimen Shrinkage (ASTM C157):
 - Long-Term Shrinkage ≤ 700 microstrain, or
 - 28-Day Shrinkage ≤ 400 microstrain
- In Conjunction with 22°F Differential Deck/Beam Temperature
Control of Drying Shrinkage

Cracking

- Decrease in Allowable Shrinkage for every 5°F
 - Increase in Diff. Deck/Beam Temperature:
 - Long-Term Shrinkage: 80 microstrain, or
 - 28-Day Shrinkage: 45 microstrain
 - Max. Diff. Deck/Beam Temperature = 35°F

Shrinkage Specimen Mold
3"x3"x11" Prism

Preparing Shrinkage Specimens
Factors Affecting Drying Shrinkage

- Aggregate Mineralogy
- Cement Source & Type (chemistry)
- Admixtures (chemistry)
- Excessive Water in Mix
- Excessive Paste in Mix

Aggregate Mineralogy (Laboratory Experiments)

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Dolomite</th>
<th>Sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying shrinkage (microstrain)</td>
<td>420</td>
<td>1012</td>
</tr>
<tr>
<td>Absorption</td>
<td>0.25%</td>
<td>1.60%</td>
</tr>
</tbody>
</table>
Recommendation on Aggregate

1. Use “Hard” aggregate:
 - Quartz, Dolomite, Limestone
2. Do Not use “Soft” aggregate
 - Sandstone, Slate
3. If aggregate performance Questionable
 - Limit course aggregate Abs. to 0.50%
 - Limit fine aggregate Abs. to 1.50%

Cement Source & Type (Laboratory Experiments)

Cement source and type:

<table>
<thead>
<tr>
<th>Source</th>
<th>“A”</th>
<th>“B”</th>
<th>“C”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Drying shrinkage (microstrain)</td>
<td>375</td>
<td>785</td>
<td>488</td>
</tr>
</tbody>
</table>

Recommendation on Cement

1. Use cement with a proven source
2. Use type II cement
3. Use cement content as low as possible
Recommendation on Admixtures

1. Always make trial mix
2. Observe mix properties
3. Measure shrinkage
4. Change source if not satisfied

Recommendation to Reduce Water

1. Use lower Slump
2. Use larger Aggregate
3. Use more aggregate & less Paste
4. Use water reducers
5. Concrete at lower Temperatures