Presentation Outline

- Background
- Goals and Features
- Components
 - Materials
 - Structural Design
 - Construction
 - Maintenance
- Example State Initiatives
- Future Needs and Summary
Background

- Why long life?
 - Reduce future maintenance and rehabilitation requirements
 - Minimize traffic disruptions
 - Reduce user costs
 - Increase safety (fewer work zones)
 - Reduce life-cycle costs

- What is long life?
 - 30-60 year service lives
 - Includes minor maintenance and rehab
Long-Life Design Concept

Serviceability vs. Time or Traffic

- Long Life Design & Construction
- Std Design & Construction

Threshold Level

Life Extension
Concrete Pavement
Hall of Fame

- Bellefontaine, OH (Court Street)—1893
- Calumet, MI (7th Street)—1906
- Salt Lake City, UT (B Street)—1907
- Duluth, MN (6th and 7th Streets)—1910
- Urbana, IL (Central Ave)—1911
- Texas (IH 40 Frontage Road)—1920s
- Jacksonville, FL (SR 228)—late 1930s
- Hollywood, GA (SR 17)—1942
- Fairfield, CA (I-80)—1948 (CRCP)
- Dorchester County, SC (I-26)—1962
Goals of Long-Life Concrete Pavements

- Eliminate “early” failures related to design or construction inadequacies
- Prevent materials-related distresses
- Control structural distresses below threshold levels over design period
 - Cracking
 - Faulting
 - Punchouts (CRCP)
- Maintain effective functional performance (smoothness, noise, surface friction) over design period
Features of Long-Life Concrete Pavements

- Increased service life (30 to 60 years)
- Lower life-cycle cost
- Fewer maintenance closures
- Deferred rehabilitation activities
- Reduced construction times
Components of Long-Life Concrete Pavements

- Materials and mix design
- Structural design
- Construction
- Maintenance
Materials and Mix Design

What we want to avoid
Materials and Mix Design

- High-quality, durable aggregates
- Combined gradation
- Portland cement plus pozzolans or slag for durability
- Minimum cementitious content: 500 lb/yd3
- Effective air void system for environment
- Max w/cm of 0.45
Structural Design

What we want to avoid
Structural Design

- Slab thickness
- Base type/drainage
- Joint design
 - Joint spacing
 - Joint sealant
 - Load transfer
- Edge treatments
Structural Design
—Slab Thickness—

- Thicknesses ≥ 12 in
 - Depends on truck traffic and design period
- Thickness is inter-related with many other design variables
- New M-E design software allows for evaluation of interactive effects
Structural Design

—Base Type/Drainage—

- Stabilized base (LCB/CTB or ATB) for medium to heavy truck traffic
 - High strength LCB/CTB not necessary
 - Interface treatment critical

- Drainable base
 - Stability more important than permeability
 - 500 to 800 ft/day
Structural Design

--- Joint Design ---

- **Joint spacing**
 - Shorter joint spacings (15 ft works well)

- **Joint sealant**
 - High quality sealants
 - Longer resealing cycles

- **Load transfer**
 - Dowel bars a necessity
 - Minimum 1.5 inch for slabs \(\geq 12 \) in thick
 - Corrosion resistant
Structural Design

—Edge Treatment—

- **Widened Lane**
 - Slab paved 1-3 ft wider
 - Lane striped at 12-ft width
 - Reduces edge and corner stresses/deflections

- **Tied concrete shoulder**
 - Reduces edge stresses/deflections
 - Reduces moisture infiltration
 - Use as emergency or future traffic lane
Construction
What we want to avoid
Construction

- Uniform production and delivery
- Effective placement
 - Embedded steel
 - Consolidation
- Effective finishing, texturing, and curing
 - Minimal manual finishing
 - Durable, low-noise texture
 - Timely and adequate curing
- Timely joint sawing
- High levels of initial smoothness
Maintenance

- Maintain serviceability of pavement
- Activities
 - Joint resealing (as appropriate) with long lasting materials
 - Periodic surface texturing as needed for rideability and safety
 - Localized repairs
Example State Initiatives

- Minnesota
- Illinois
- California
Minnesota

- 60-year design
- Urban freeways (Twin Cities)
- Features:
 - Thicker slab (14-in JPCP)
 - Durable mix design
 - High quality, well-graded aggregate
 - Dense, impermeable mix (35% GGBFS, w/cm<0.4)
 - 1.5-in stainless steel clad dowel bars
 - 4-in granular base / 12-in select granular / sand
Illinois

- 30+-year design
- Urban freeways and heavy traffic downstate corridors
- Features:
 - 12 to 14 in CRCP
 - Durable aggregate (D-cracking concerns)
 - Higher steel content
 - Epoxy-coated steel and tie bars
 - 6 in ATB / 12 in aggregate subbase
California

- 40-year design
- For corridors with 20-year traffic > 150,000 vpd or >15,000 tpd
- Features:
 - Maximum 12-in JPCP (includes 3/8 in for sacrificial grinding)
 - Stabilized base (LCB or ATB)
 - Tied PCC shoulders or widened slab

Increase in initial cost only about 3 – 5 % (about $25,000 – $50,000/lane mile)
Future Needs

- Continue to improve
 - Understanding of pavement behavior
 - Design feature optimization
 - Concrete mixture optimization
 - Construction practices
- Perform accelerated structural and durability testing to gain more rapid feedback and insight on performance of new designs and materials
Summary

- Movement toward long-life pavements
 - Selected (high-volume) highways
 - 30-60 year design lives
 - Minimize future rehabilitation activities
 - Minimize life-cycle costs
- Minimal increase in initial costs (~5%)
- Requires holistic approach
 - Materials and mix design
 - Structural design
 - Construction
 - Maintenance