National Concrete Pavement Technology Center

Uniting agencies, industry, and researchers to advance concrete pavement technology

Ted Ferragut
Virginia Concrete Conference
March 10, 2006
PCC paving is a integrated system that still has knowledge gaps
A National Plan

A National Center
What is the National Plan?

The CP Road Map

Comprehensive, collaborative, strategic plan for concrete pavement research and technology
Research Plan Summary

- 12 tracks
- 250 problem statements
- $250M
- 10 years
Unifying Vision of the Plan

By 2015, the highway community will have a comprehensive, integrated, fully functional system of concrete pavement technology that provides innovative solutions for customer-driven performance requirements.
CP Road Map
Vision

Mix & Materials

Pavement Management / Business Systems

Design

Construction
Hallmarks of the Plan

Not

- Owned by any organization
- Tied to any one fund

- Promotes cooperation and synergy
- Leverages ideas and funds
- Merges research and implementation

Unity through common goals
Need for National Center

Yesterday …

• Sketchy plan

• Minimal resources

• No unifying organization
The National Center

• Center for Transportation Research & Education at Iowa State University (Formally PCC Center)
• ACPA Endorsement
• Collaborative philosophy
• Administrative and support capabilities
What the Center Is Not

Not Managing all research
Not Controlling all research
Not Sponsoring all research
Not Banking all research
Not Issuing all proposals
What the Center Is

Is Informing community
Is Facilitating partnering
Is Helping move forward
Is Help accelerate implementation

Center is Research and Technology aid to help researchers and implementers access the right resources and partnerships
What the Center Is

Orchestra leader: helping everyone stay in harmony

Unity through Common Goals
Operating Structure

Executive Board of Directors
Provide direction on center business operations, management, & finances

Advisory Board
Provide center oversight and program guidance

Center Staff
Advisory Board

- FHWA
- FAA
- TRB
- State DOTs / AASHTO
- Iowa DOT
- Academia
- Iowa State University
- Tri-Services
- NACE
- APWA
- ACPA
- State paving chapters / associations
- ICPA
- PCA
- NRMCA
- NSSGA
- IGGA
- Fly ash & slag industries
- Chemical additive industry
- Equipment industry
- Reinforcement industry
SAFETEA-LU 2005-2009

Concrete pavement research funds
- $10.0M - National Center
- $16.4M - Research

Administration
- FHWA
- National Center

Leverage!!
CP Tech Center Vision

Collaborate!!

Implement!!
Strategic Focus Areas

1. Mix Analysis
2. Surface Characteristics
3. Concrete Overlays
4. Long-Life Pavements
Fire and Ice Sessions

Hot Topic Roundtables

Initial Ideas

• ICS – Intelligent Construction Systems for Concrete Pavements

• PENNDOT – Validating Changes
1. Performance-based Mix Design and Analysis System

- Mix Optimization and Proportioning Guide
- Lab Equipment of the Future
- Regional and National Criteria
- Integration with design and field quality control

Analyze for:
- Compatibility of Materials
- Environmental influences
- Cracking
- Early set
- ASR
- Curling and Warping Potential
- New materials, including variability

UNDERWAY
Mix Analysis

Material & Construction Optimization

- 17 state pooled fund
- Industry
- FHWA

UNDERWAY
Mix Analysis

Integrated Materials & Construction
Best Practices Manual

- CTL Group, PCA, ACPA
- FHWA
- Industry

UNDERWAY
Mix Analysis

Self-Consolidating Concrete for Slip-Form Paving

- ACBM (Northwestern University)
- FHWA
- 5 state pooled fund
- Industry

UNDERWAY
Mix Analysis

Ternary Mixes

• Penn State University
• FHWA
• 8 state pooled fund
• Industry

UNDERWAY
3. High-Speed NDT & Intelligent Construction Systems

- Continuous monitoring
- Improved production process
- Automatic recordation of quality control
- Feed to pavement management system

- Smoothness
- Thickness
- Consolidation
- Strength
- Curing
- Workability
- Steel location
- Texture

and more

UNDERWAY
4. Optimized Surface Characteristics

Safe, Quiet and Smooth

Optimized conditions

• Friction
• Noise
• Smoothness
• Splash and spray
• Lateral drainage
• Light reflectance
Surface Characteristics

Noise-Texture-Friction Program

- Strategic Research Plan
- Texture Experiments
- Innovation
Surface Characteristics

- FHWA
- ACPA
- ISU
- IGGA
- Purdue
- TDC Partners
- Transtec Group
OBSI Noise Protocols
RoboTex Texture Device
RoboTex Texture Device

Surface 1: ¾” Longitudinal Tining
Test Section Average On-Board Sound Intensity Levels - IA - US 30 (Ty. 1)
Post-Broom/Pre-Traffic - A.M. (10/22/05-11/8/05)
5-ft. Moving Average On-Board Sound Intensity Levels - IA - US 30 (Ty. 1)
Post-Broom/Pre-Traffic - A.M. (10/22/05-11/8/05)
Test Section Average On-Board Sound Intensity Levels - IA - US 30 (Ty. 1)
Post-Broom/Pre-Traffic - A.M. (10/22/05-11/8/05)

Nominal Texture Type

On-Board Sound Intensity Level (dBA)

<table>
<thead>
<tr>
<th>Texture Type</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" S + 1/8" D + Turf</td>
<td>95</td>
</tr>
<tr>
<td>3/4" S + 1/16" D + Burlap</td>
<td>97</td>
</tr>
<tr>
<td>1" S + 1/16" D + Burlap</td>
<td>99</td>
</tr>
<tr>
<td>3/4" S + 1/8" D + No Pretexture</td>
<td>101</td>
</tr>
<tr>
<td>3/4" S + 1/4" D + Burlap</td>
<td>103</td>
</tr>
<tr>
<td>1/2" S + 1/8" D + Burlap</td>
<td>105</td>
</tr>
<tr>
<td>3/4" S + 1/8" D + Burlap (Short)</td>
<td>107</td>
</tr>
<tr>
<td>Diamond Grinding</td>
<td>109</td>
</tr>
<tr>
<td>1/2" S + 1/16" D + Burlap</td>
<td>111</td>
</tr>
<tr>
<td>3/4" S + 1/16" D + Burlap</td>
<td>113</td>
</tr>
</tbody>
</table>

Legend:
- Longitudinal Tining
- Transverse Tining
- Drag
- Diamond Grinding
PCC Pavement Overlays

3 ½” PCC Overlay and Widening

|
| 2”-18 yr. HMA |
| 2 1/2 ”-38 yr. HMA |
| 70 yr. Concrete Pavement |

UPCOMING
Long Life Pavements

- Cloud Cover
- Sun
- Humidity

Concrete Temperature and Moisture Monitoring
- Sawing
- Curing Methods
- Plastic Shrinkage
- Cracking
- Thermal Shock
- Horizontal Cracking

NDT Testing
- Cylinder and Beam Breaks

Mixing and Placement
- NDT Testing
- Early Opening Traffic

UPCOMING

Long Life Pavements
CP Tech Center Vision

Virginia DOT

ACPA – MAC

CP Tech Center

“Partners in the Future”
National Concrete Pavement Technology Center

For more information,

Tom Cackler
Director, CP Tech Center
Iowa State University
515-294-3230
tcackler@iastate.edu
www.cp.techcenter.org
EXTRA SLIDES
2. Performance-based Design Guide

- Beyond the AASHTO ME Guide
- All concrete design in one place
- Pavement preservation and restoration
- High speed computerized performance analysis

The Next Generation of Design
5. Equipment Automation and Advancements

- Next Generation of Construction Equipment
- Advanced batching
- From placement to curing to one-pass installation of drains
- Partnership with Equipment Manufacturers
6. Innovative Joints

- Cross cutting – from design to performance
- Incremental Improvement
- Breakthrough technology to supplement dowel technologies
- From Long Life Pavement to Thin Overlays
7. High Speed Rehabilitation & Construction

- From planning to computer simulation
- From slip form to pre-cast
- From minor recycling to one-pass remove and place pavement
8. Long Life Concrete Pavements

- From 30 to 50 years and beyond, with reliable and cost effective pavement solutions
- Improved designs
- Improved mixes
- Better joint designs
- Better approach to operational requirements

Three Approaches
- Major foundation and slab designed for no intrusion
- Major foundation and slab with rapid renewable surface course
- Major foundation - slab remove and replace and upgrade
9. Accelerated & Long Term Data Collection

Accelerated testing; test roads, beyond LTPP, to collect, store and retrieve the next generation of pavement data accurately, quickly, and efficiently.
10. Pavement Performance

Can we get out there to measure our pavements anymore?

Pavement management and feedback systems, including sensors embedded in the pavement

Roles and responsibilities and economic strategies for the future including innovative contracting, economics for various pavement solutions, sustainability, public-private partnerships and an new technology transfer system
12. Advanced Materials

From idea to lab to field to service to meet special conditions, environmental challenges, and faster construction.