Growing Concerns in the US

- Aging highway system
- Heavier truck loads
- High maintenance costs

Solution

- Long-life concrete pavements that can provide a 40 to 50+ years of service life with only minimal inventions for M&R

Is the US concrete pavement technology optimized to meet the long-life needs?
Scan Objectives

Identify techniques used in other countries, and implementable in the US, for achieving longer-life concrete pavements

SCAN sponsored by: AASHTO, FHWA, NCHRP

SCAN Team Definition of Long-Life Pavements

Pavements optimized for a performance period in excess of 40 years, an extended time to first rehabilitation and minimal interventions for M & R activities. -- Per Bus Ride Discussion
Countries Visited
- Canada
- Germany
- Austria
- Belgium
- Netherlands
- United Kingdom

LLCP Team
Tom Cackler, Angel Correa, Dan Dawood, Peter Deem, Jim Duit, Georgene Geary, Andrew Gisi, Amir Hanna, Steve Kosmatka, Rob Rasmussen, Bob Tally, Shiraz Tayabji, Suneel Vanikar, Jerry Voigt, Katie Hall

Areas of Interest
- Design
- Materials
- Construction
- Maintenance
Findings: Pavement Selection Strategies

- “Concrete pavement” means “long life”
- Public’s concerns (congestion, safety, environment/noise) influence pavement type selection

The Austrian Pavement Selection Scheme

- Design catalogs used in Austria, Belgium, and Germany
- Design lives of 30 years typically used; up to 50 years service expected
- Truck loadings are heavier than in US; super-singles are common

Catalog designs updated regularly - based on theoretical & lab studies, field experiments and performance observations
Findings: Pavement Design

- Full-width, full-depth concrete emergency lanes constructed for future capacity needs
- Widened slabs used to reduce concrete stress and deflection (as in the US)

Findings: Pavement Design

- Fewer tie bars used in longitudinal joints
- Smaller dowel bars (1-in-diameter) used
- JCP and CRCP built to same thickness (as in US)
- CRCP used for long life in Belgium - technology adopted from the US

Findings: Pavement Design

- Sealed and unsealed joints both perform well
- Bases: dense HMA and CTB; unstabilized bases also used
- 5 mm thick geotextile used to separate CTB and PCC in Germany
- Foundations are drainable, stable, protect against frost, and allow recycling of materials
Austrian Pavement Design
RVS 03.08.63

Type 5
Concrete
HMA
Unbound Base

Type 6
Concrete
HMA Layer
CTB

Load Classes

Freeways
Design Axle Load = 22,500 lb

Load Class S
Slab T = 10 in.
ESAL ≤ 40 Millions
Design Life = 30 Years

No distinction between "long life" and "normal life" for PCCP

German Standard Designs

<table>
<thead>
<tr>
<th>Construction class</th>
<th>Thickness of concrete pavement in cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydraulically bound base course with geotextile</td>
</tr>
<tr>
<td>SV</td>
<td>27</td>
</tr>
<tr>
<td>I</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>23</td>
</tr>
</tbody>
</table>
German Pavement Section

2. Standard concrete designs currently employed in Germany
Concrete pavement on a base course with hydraulic bonding and an intermediate layer comprising non-woven fabrics

- Installation
- Fixing

5 mm Geotextile over CTB

Belgium Highlights

Primarily use of CRCP – long-term experience

- 1970 to 1977
 - PCC t = 20 cm; Steel = 0.85%
- 1977 to 1991 (after US visit)
 - PCC t = 20 cm; Steel = 0.67%
- 1992 to 1995
 - PCC t = 23 cm; Steel = 0.72%
- Since 1995
 - PCC t = 23 cm; Steel = 0.76%

Basic US Section

Single layer construction

- 13 to 14 in.
- 6 in.
- 10 ft.

Concrete (sometimes well-graded)
Permeable base with edge drain
Granular filter layer
Subgrade stabilized
Findings

Typical European Section
(Thinner PCC thickness than in US)

- Top lift w/ exposed aggregate
- Bottom lift w/ recycled aggregates
- Emergency Lane
- Concrete (combined graded)
- HMAC or CTB (with AC/geotextile)
- Thick frost protection layer
- Subgrade

Standard Features (Austrian)

- Transverse contraction joint
- Longitudinal joint
- 9 cm sealed
- 25 cm dowel
- 6 cm asphalt
- 20 - 25 cm cement-stabilized
- 21 cm recycled concrete MA 32
- 6 cm exposed aggregate concrete MA 8 or 11

Findings: Construction & Materials

- Lower-alkali cements and blended cements used to mitigate ASR
- SCMs typically not considered in mixture proportions
- Attention to aggregate quality and gradation ... specially for top layer in two-lift construction
Findings: Construction and Materials

- Recycled concrete and recycled asphalt pavement used (or mandated) in lower layer in two-course construction
- Some countries use tiebars coated only in middle third

Findings: Construction and Materials

- Coated dowel bars used
- Intelligent compaction control used in Austria
- Small-plate proof testing of granular layers used in some countries
- Roughness measured with four-meter straightedge; excellent smoothness achieved

Concrete (RVS 85.06.32)

- Freeze-thaw resistant
- Flexural strength (28-days)
 - Bottom lift ≥ 800 psi
 - Top lift ≥ 1,000 psi
- Compressive strength (28-days)
 - Bottom lift ≥ 5,000 psi
 - Top lift ≥ 6,000 psi
- Well graded aggregates – 4 bins
- Two plants
 - Bottom lift concrete
 - Top lift concrete
Aggregate Bins

Recycling Concept for Concrete Motorways

Concrete Composition
RVS 88.06.32
Findings

Top Lift Concrete Placement
Fresh to fresh on bottom lift concrete

- Tie-bar placed by hand (right behind first paver)
- Dowels - placed automatically
- Densely compacted bottom lift – No sinkage
- Minimal surface finishing - longitudinal smoother
Drainage system (Austria)

Exposed Aggregate Surface

Step 1 - Curing compound + retarder
- water-repellent coefficient > 90 % (first 24 h)

Step 2 - Curing compound (applied after brushing)
- water-repellent coefficient > 85 %

Brushing Machine

Exposed aggregate surface
8 or 11 mm max size
Findings: Maintenance

- Typically, very little maintenance done on concrete pavements
- Little if any joint resealing done
- Ontario is field-testing precast slab techniques (similar to US) for rapid repair

Overall Highlights

- Standard designs - Stay with what works
 - Frost-free foundation & good base (HMAC/CTB)
- Standard materials
 - Higher strength concrete than in US
 - Blended cements more common, less SCMs
 - Upto 4 bins for concrete aggregate
 - Exposed aggregate surface – lower noise

Overall Highlights

- Good construction practices/QC
 - Good ride, even though no ride specs
 - They use straight-edge testing
 - Low paste surface (only 1 to 2 mm – brushed off)
 - Joint sawing with very little raveling
- Very careful approach to introducing new features/techniques

Design, materials and construction features need to be well integrated - no piecemeal improvements!
Possible US Implementation Items
High Payoff Items for Implementation

- Two-Lift Construction (as per 1992 SCAN)
 - Scarce quality aggregates for top lift only
 - Recycled/marginal aggregates in lower lift
- Design Features Catalog (1992 SCAN)
 - Standard design features for different types of roads
 - Highlight features necessary for long-life pavements
- High Quality Foundations
 - Minimize/eliminate frost & swelling
 - Basics - good pavements start with good foundations!

Possible US Implementation Items
High Payoff Items for Implementation

- Greater Attention to Concrete Mixture Proportions
 - Well graded aggregates/Dense mixture
 - Higher strength?
- Geotextile Interlayer
 - As interlayer instead of HMAC (for unbonded overlays)
 - Reduce overall section thickness
- Exposed Aggregates texture (1992 SCAN)
 - For noise reduction (additional evaluation needed)

US Implementation Champions?

- FHWA – provide leadership
- State DOT’s – provide projects
- Industry (ACPA) – lead innovations
- Academia – support innovations
- National Concrete Pavement Tech Center/ISU – support innovations
- AASHTO/TRB – support T2 efforts
Implementation Funding?
- Scan Program (limited funding)
- FHWA Highways For Life Program
- FHWA Concrete Pavement Earmarks
 - CPTP & Other
- NCPTC/ISU Earmark Funding
- Industry Initiatives
- State Pooled Funding for Specific Implementation Items

National Plans for Implementation
- Two-lift construction
 - Highways for Life program funding
 - Georgia, Kansas, Pennsylvania, Texas
 - Technical support: NCPTC/ISU
- Geotextile layer (as a bond-breaker for unbonded overlay)
 - Under discussion – Oklahoma DOT & Duit Construction

Thank You!

Obtaining Long-Life - Simply by Achieving Consistently What We Know is Attainable