A. Project history

In 1991, Congress defined West Virginia’s portion of the Coalfields Expressway as extending from Beckley, West Virginia, to the Virginia state line and appropriated $50 million for the road’s design and construction. The NEPA process for West Virginia’s portion culminated in 2000 with the issuance of a Record of Decision. Meanwhile, in 1995 Congress added Virginia’s portion of the Coalfields Expressway (from the West Virginia state line to Route 23 in Pound) to the National Highway System and designated it as a Congressional High Priority Corridor.

A Notice of Intent to prepare an EIS was published in the Federal Register on December 17, 1997. The purpose of the project, as summarized on pages S-1 and S-2 of the final EIS, is to increase mobility in the project area, thereby aiding the economic development efforts of the local governments. The area currently is in a state of economic decline due to employment reductions in the coal mining industry and the lack of safe and efficient access to the area. The draft EIS was signed on March 1, 2000, and three Location Public Hearings were held on April 25, April 26, and April 27, 2000 at Clintwood Elementary School, Sandlick Elementary School (Haysi), and Grundy High School. On August 17, 2000, the Commonwealth Transportation Board endorsed Alternative F1 for the Coalfields Expressway. A final EIS was developed which incorporated the analysis from the draft EIS, addressed comments submitted on the draft EIS (see final EIS, Chapter 8), and incorporated any updated information. The final EIS was signed on September 12, 2001.

B. Selected Alternative Decision

The alternative selected by the Federal Highway Administration for the Coalfields Expressway Location Study is the alternative identified in the final EIS as Alternative F1 (see pages 2-18 to 2-20 of the final EIS). Alternative F1 is a combination of segments from the build alternatives studied in the draft EIS.

The selected alternative will be designed and constructed in numerous phases. Each phase will ultimately contribute to the project’s overall purpose and need. Sequential design and construction of large projects is consistent with FHWA regulations and guidance. Including multiple construction projects in one environmental document is consistent with the regulatory requirement to address environmental matters on a broad
The first phase to be constructed is the portion from Bull Gap to Harman Junction. Other phases will be advanced as funding becomes available.

The selected alternative involves the construction of an approximately 59-mile, four-lane divided roadway. The alignment begins at Route 23 north of the intersection of Route 23 and Business Route 23/Route 83 in the Town of Pound. It continues easterly on new location before turning southeasterly to the Route 83 corridor and follows the general alignment of Route 83 to point west of the Town of Clintwood. It then turns south of Clintwood on new location. Near the east town limits of Clintwood, it turns in a northerly direction and then continues easterly. Connections would be provided at Route 72 west of Clintwood, Route 83 to the south of Clintwood, and Route 672 to the east of Clintwood.

Continuing easterly, Alternative F1 crosses the Cranes Neck River and then turns in a northerly direction and has two connections with Route 63 before turning in a more easterly direction. It connects with Route 63 again before crossing the Russell Fork about one mile north of the Town of Haysi. It then continues northerly on new location and passes about three miles south of the entrance to Breaks Interstate Park. A connection to Route 80 south of the Park is provided. It then continues in a northerly direction into Buchanan County and follows the Route 609 corridor near the Levisa Fork. In this area, Alternative F1 includes the Buchanan County Industrial Access Connector, which would provide access to a proposed regional airport and other industrial development. The alternative then roughly parallels the Levisa Fork for about two miles before crossing it and Route 460. A connection about one mile long provides access to Route 460 north of the Town of Grundy.

Alternative F1 then follows the Route 656 corridor for almost four miles. It then turns in a more easterly direction, continuing on new location well north of Route 83. It terminates at the Virginia/West Virginia state line and would connect to West Virginia's portion of the Coalfields Expressway.

Alternative F1 is identified as the selected alternative because it satisfies the purpose and need while providing a reasonable balance of the many environmental, social, economic, and engineering issues involved. In addition, a major purpose of this project is to aid the economic development efforts of the localities in the project area (see pages 1-9 to 1-14 of the final EIS). Alternative F1 is the alignment preferred by the affected localities because it addresses their economic needs. Furthermore, the alternative is supported by the Coalfield Coalition, a non-profit advocacy group supporting the Coalfields Expressway.

Table S-2 of the final EIS summarizes the potential beneficial and adverse impacts of the build alternatives and the No-Build Alternative. In comparing the impacts, no build alternative stands out in terms of having considerably greater or fewer impacts than the other build alternatives. The selected alternative’s impact on protected resources is minor for a project of this scope. Alternative F1 will not use any property protected by Section 4(f) and will not affect any historic properties. The alternative also will not adversely
affect any threatened or endangered species, and will impact approximately 3.3 acres of wetlands.

C. Alternatives Considered

After identifying a study area within which the proposed project would fulfill the project purpose and need, preliminary roadway segments were developed. The segments were evaluated based on their ability to meet criteria based on the project’s objectives. These criteria included environmental impact, conformance with design standards, right-of-way/displacements, land use/economic development, and construction costs. In order to reduce the large number of segments to a reasonable range of alternatives, the segments were combined to produce five build alternatives. These five alternatives have sufficiently different features and characteristics which allowed them to be evaluated and compared with each other and the No-Build Alternative in the draft EIS. The following alternatives were also considered but were not carried forward for detailed analysis in the draft EIS because they did not meet the project’s purpose and need: Transportation System Management Alternative, Mass Transit Alternative, and Improve Existing Facility Alternative.

No-Build Alternative: Consistent with the requirements of NEPA and FHWA guidelines, full consideration was given to the environmental consequences of taking no action to meet the purpose and need of the project. The No-Build Alternative involves continuation of the existing transportation system in the region. While the No-Build would have no construction costs or environmental impacts, it would not allow the region to realize the benefits of a constructed transportation facility. The No-Build Alternative also provides a baseline condition with which to compare the improvements and consequences associated with the build alternatives. The No-Build Alternative was not selected because of its failure to address the purpose and need of the project.

Transportation System Management: Transportation System Management (TSM) improvements are improvements designed to maximize the efficiency of the existing transportation system. These improvements are often limited in scope and include such activities as traffic signal timing optimization, ridesharing, and high-occupancy vehicle lanes on existing roadways. This alternative is usually relevant only for major projects in urbanized areas (i.e., population greater than 200,000), whereas the Coalfields Expressway project area is predominantly rural. The TSM alternative does not meet the purpose and need of the project and therefore was not selected.

Mass Transit Alternative: A specific mass transit alternative (e.g., bus systems, rail) was not carried forward for detailed analysis in the draft EIS because it would not be effective in addressing the various elements of the purpose and need (improving safety, improving corridor mobility, etc.). The area has a low and widely dispersed population, and a public transportation alternative would not appropriately address the region’s transportation needs.
Improve Existing Facility Alternative: This alternative would involve the complete reconstruction of Route 83, which is the only major east-west highway serving the study area. Due to the amount of existing roadside development in the towns and urban areas, as well as the proximity of major waterways and railroad facilities, reconstruction of the entire length of Route 83 would cause considerable relocation and natural resource impacts. In addition, considerable impacts to the traveling public would occur because of the maintenance of traffic and construction sequencing required. Therefore, this alternative was not selected. However, several portions of the Route 83 corridor comprise portions of the build alternatives studied.

Candidate Build Alternatives: There were five build alternatives studied in detail in the draft EIS. Each build alternative would begin at Route 23 near the Town of Pound, and provide for a four-lane, divided highway that would connect to the West Virginia’s portion of the Coalfields Expressway at the state line. Preliminary alternatives were evaluated based on their ability to meet the purpose and need of the project. Alternatives meeting the basic purpose and need were then evaluated based on engineering, environmental, and socioeconomic criteria to determine which alternatives best met the purpose and need while minimizing impacts. The result was five alternatives being carried forward in the draft EIS for detailed analysis. Each step in the alternative screening process is described in the final EIS on pages 2-1 to 2-13.

D. Threatened and Endangered Species

The project has been coordinated with the U.S. Fish and Wildlife Service (FWS) regarding threatened and endangered species. Three protected species are known to inhabit the study area: Virginia spiraea, small whorled pogonia, and Indiana Bat. Surveys conducted along the selected alternative indicated that the Virginia spiraea and the small whorled pogonia are not present. Regarding the Indiana Bat, both summer and winter habitat were considered. Surveys of potential winter habitat revealed that no Indiana Bats were present along the selected alternative. The presence of Indiana Bat summer habitat along the selected alternative was assumed. In order to avoid adverse impacts to the species and comply with the Endangered Species Act, the project will adhere to specific conditions established by the FWS. These conditions include a prohibition on the clearing of trees (i.e., areas suitable for Indiana Bat summer habitat) within the project limits and a buffer area between April 1 and November 15 of each year.

E. Miscellaneous Issues

Throughout the NEPA process, there have been substantial efforts to involve the public. Public involvement efforts include: a toll-free hotline that was established in 1997; a homepage on the Virginia Department of Transportation’s (VDOT) website that was created in early 1998; three project newsletters that were published and distributed; and numerous counter top displays providing project information in libraries, post offices, schools, and other government buildings. These efforts ensured that all segments of the population were included in the process.
The selected alternative will most likely contribute to indirect and cumulative impacts on the surrounding environment by inducing growth. To address this, considerable time was spent developing indirect and cumulative impact methodologies and assessing the impacts. Guidelines for estimating these impacts were established in cooperation with the U.S. Environmental Protection Agency, and local government representatives were heavily involved in the process of identifying growth areas. Although indirect and cumulative impacts will likely occur as the result of the project, an important purpose of the project is to enable the localities in the study area to improve their economic development potential and attract industrial development. See pages 4-66 to 4-77 of the FEIS for a detailed discussion of the project’s indirect (secondary) and cumulative impacts.

F. Mitigation and Minimization Measures

The selected alternative includes all practicable measures to minimize environmental harm. Coordination with resource agencies and the public has resulted in agreement on measures to mitigate and minimize adverse impacts to environmental resources. See Table 1 for a detailed summary of the mitigation and minimization measures that will be implemented on this project.

G. Other State and Federal Actions Required

Federal and state regulations require that various environmental permits or approvals be acquired prior to the start of project-related construction activities. The following permits, compliances, and approvals will be required:

- Compliance with Executive Order 11990 and Section 404 permits (Clean Water Act) from the U.S. Army Corps of Engineers.
- Section 401 permit (Clean Water Act) from the Commonwealth of Virginia, Department of Environmental Quality
- Section 402 permit (Clean Water Act) from the Commonwealth of Virginia, Department of Environmental Quality
- Subaqueous Bed Permit (Virginia Water Law) from the Virginia Marine Resources Commission
- Approval from the U.S. Army Corps of Engineers to use property on the John W. Flannagan Dam and Reservoir property

H. Monitoring or Enforcement Program

A formal monitoring program is not proposed. Permit conditions and coordination with permitting agencies during design development, right-of-way acquisition, and construction will ensure consistency with applicable environmental laws and regulations.
I. Document Availability and Legal Sufficiency

The draft EIS was signed on March 1, 2000, and made available to the public at several locations including libraries, government offices, and VDOT offices. On September 12, 2001, the final EIS was signed by FHWA and made available to the public. Copies of the final EIS were mailed to all entities that received a copy of the draft EIS. On September 28, 2001, the Environmental Protection Agency published a Notice of Availability of the final EIS in the Federal Register. The comment period for the final EIS ended November 5, 2001. One comment was received and has been addressed.

The final EIS was reviewed by FHWA's legal counsel at the Eastern Resource Center. On September 7, 2001, Senior Attorney Brett Gainer issued a finding of legal sufficiency for the EIS.

J. Decision

Based on the information provided and reasons cited, the Federal Highway Administration has selected Alternative F1 to address the identified purpose and need for the project and will continue to assist VDOT in the development of the project from Route 23 near Pound to the Virginia/West Virginia state line.

11/13/01

Date

Roberto Fonseca-Martinez
Division Administrator
| TABLE 1
PROPOSED MITIGATION MEASURES |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RELOCATIONS</td>
</tr>
<tr>
<td>121 Families</td>
</tr>
<tr>
<td>6 Businesses</td>
</tr>
<tr>
<td>1 Church</td>
</tr>
<tr>
<td>Minimization of displacement impacts will be incorporated into the final highway design. Ultimately, relocation will be required. Acquisition and relocation will proceed in accordance with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended. Any individuals or families being displaced because of the acquisition of real property, in whole or in part, is eligible to receive reimbursement for fair market value of property acquired and moving costs. Displaced property owners would be provided relocation assistance advisory services. Relocation resources would be made available to all residents and businesses without discrimination. Last resort rent supplements and last resort replacement housing payments may be necessary. Last resort housing payments would be used in order to place the relocated persons in decent, safe, and sanitary housing, if necessary. In any event, replacement housing would be provided for all displacements.</td>
</tr>
<tr>
<td>FARMLANDS</td>
</tr>
<tr>
<td>No prime farmland would be impacted by the selected alternative. Therefore, consideration of avoidance alternatives and measures to minimize impacts is not necessary.</td>
</tr>
<tr>
<td>NOISE</td>
</tr>
<tr>
<td>No noise barriers were found to be feasible and reasonable with the selected alternative. Recognizing that feasibility and reasonableness of sound barriers are based upon preliminary engineering information, it is possible that barriers determined to not be feasible and reasonable during the NEPA process may be found feasible and reasonable during final design. In any case, these barriers would be evaluated and constructed as each individual segment of the project proceeds through the design and construction sequence.</td>
</tr>
<tr>
<td>THREATENED AND ENDANGERED SPECIES</td>
</tr>
<tr>
<td>The project will adhere to specific conditions established by the U.S. Fish and Wildlife Service in order to avoid adverse impacts to the Indiana Bat. These conditions include a prohibition on the clearing of trees within the project limits and a buffer area between April 1 and November 15 of each year. The conditions will also help to minimize impacts to the eastern small-footed bat (Myotis leibii), a species that the Virginia Department of Conservation and Recreation is concerned about.</td>
</tr>
<tr>
<td>FLOODPLAINS</td>
</tr>
<tr>
<td>Although the selected alternative will cross a number of floodplains, all of the crossings will require bridging due the extreme topography. Therefore, the</td>
</tr>
<tr>
<td>Floodplains (Cont.)</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Wetlands</td>
</tr>
<tr>
<td>Encroach Hectares Acres</td>
</tr>
<tr>
<td>Encroachment Type</td>
</tr>
<tr>
<td>PUB 0.6 1.4</td>
</tr>
<tr>
<td>PEM 0.3 0.8</td>
</tr>
<tr>
<td>PFO 0.4 1.1</td>
</tr>
<tr>
<td>Water Quality</td>
</tr>
<tr>
<td>WATER QUALITY (Cont.)</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>HAZARDOUS MATERIALS SITES</td>
</tr>
<tr>
<td>VISUAL IMPACTS</td>
</tr>
<tr>
<td>CULTURAL RESOURCES</td>
</tr>
</tbody>
</table>
| CONSTRUCTION IMPACTS | **Air Quality**
Construction activities can have a short-term impact on local air quality during periods of site preparation, with particulate matter (also know as fugitive dust) having the greatest impact. This impact will occur in association with excavation and earth moving, cement, asphalt, and aggregate handling, heavy equipment operation, use of haul roads, and wind erosion of exposed areas and material storage piles. The effect of fugitive dust will be temporary and will vary in scale depending on local weather conditions, the degree of construction activity and the nature of the construction activity.

The Contractor will comply with the provisions of Section 107.01 of VDOT’s *Road and Bridge Specifications* (“Legal Relations and Responsibility to the Public, Laws to be Observed”) and with the State Air Pollution Control Law and Rules of the State Air Pollution Control Board, including notifications required therein. |
| CONSTRUCTION IMPACTS (Cont.) | Any burning will be done in accordance with applicable local laws and ordinances. Any burning will be performed under the constant surveillance of competent watch persons. The Contractor will not burn rubber tires, asphalt materials, used crankcase oil, or similar materials which produce dense smoke, either to dispose of such materials or as an igniter or promoter in the burning of other materials. Care will be exercised so that the burning of materials does not destroy or damage public or private property, or cause excessive air pollution.

Noise

An increase in noise levels will occur during the construction of the proposed improvements. Construction-related noise differs from that generated by normal traffic due to differences in the spectral and temporal characteristics of the noise. The degree of noise impact during construction will be a function of the number and types of equipment being used, and the distances between the construction equipment and the noise-sensitive areas.

Generally, construction operations will occur during normal working hours on weekdays. Therefore, noise impact experienced by local residents as a result of construction activities should not occur during normal sleeping hours. Any work that does take place during non-normal working hours (i.e., between 10 p.m. and 6 a.m.) that produces objectionable noise may be prohibited or restricted.

A number of measures can be utilized in order to minimize noise resulting from construction operations. Such measures include, but are not limited to, the following:

- Equip any internal combustion engine used for any purpose on or related to the job with a properly operating muffler
- Conduct truck loading, unloading and hauling so that noise is kept to a minimum
- Route construction equipment and vehicles in areas that will cause the least disturbance to nearby receptors where possible
- Place continuously operated diesel-powered equipment, such as compressors and generators, in areas as far as possible from or shielded from noise-sensitive locations
- Wherever possible, noise barriers to be constructed as part of the project will be constructed as soon as possible to allow the barriers to protect noise-sensitive areas from construction noise.
| **CONSTRUCTION IMPACTS (Cont.)** | VDOT has developed a specification concerning construction noise that is applicable to this project. In summary, the specification requires the Contractor to limit construction noise levels to 80 decibels in noise-sensitive areas adjacent to the project area. Further, VDOT may monitor construction noise and require noise abatement where exterior noise levels from construction operations exceed 80 decibels. Also, VDOT may prohibit or restrict work that produces objectionable noise between 10 p.m. and 6 a.m. Construction equipment cannot be altered such that noise levels will be greater than that of the original equipment. These provisions are contained in Section 107.14(b)(3) ("Noise") and are reproduced below:

- "The Contractor's operations shall be performed so that exterior noise levels measured during a noise-sensitive activity shall be not more than 80 decibels. Noise sensitive activity is any activity for which lowered noise levels are essential if the activity is to serve its intended purpose. Such activities include, but are not limited to, those associated with residences, hospitals, nursing homes, churches, schools, libraries, parks, and recreational areas."
- "The Department may monitor construction-related noise. If construction noise levels exceed 80 decibels, the Contractor shall take corrective action before proceeding with operations. The Contractor shall be responsible for costs associated with the abatement of construction noise and the delay of operations attributable to noncompliance with these requirements."
- "The Department may prohibit or restrict to certain portions of the project any work that produces objectionable noise between 10 P.M. and 6 A.M. If other hours are established by local ordinance, the local ordinance shall govern."
- "Equipment shall in no way be altered so as to result in noise levels that are greater than those produced by the original equipment."
- "When feasible, the Contractor shall establish haul routes that direct his vehicles away from developed areas and ensure that noise from hauling operations is kept to a minimum."
- "These requirements are not applicable if the noise produced by sources other than the Contractor's operation at the point of reception is greater than the noise from the Contractor's operation at the same point."

Water Quality
Effects to water quality resulting from erosion and sedimentation, as well as from pollutants such as chemicals, fuels, lubricants, bitumens, raw sewage, and other harmful waste, will be strictly controlled in accordance with Sections 107 and 303 of VDOT's Road and Bridge Specifications. The Contractor will exercise every reasonable precaution necessary during construction to prevent pollution of rivers, streams, or impoundments. All construction discharge will
| CONSTRUCTION IMPACTS (Cont.) | be adequately filtered prior to discharge into waters and will meet the State requirements. During spawning seasons, discharges and construction activities in spawning areas will be restricted so as not to disturb aquatic species. In the event the Contractor dumps, discharges, or spills any contaminant which may affect water quality, he/she will immediately notify all appropriate local, state, and federal agencies and will take immediate action to contain and remove the contaminant. |

Maintenance and Control of Traffic
Maintenance of the current flow of traffic on the existing roadway network will be planned and scheduled to minimize adverse impacts to the traveling public. Within construction areas, traffic control measures using standard practices will be used, as outlined in Virginia’s *Work Area Protection Manual*. In addition to using these standards, news releases of construction activities and schedules will be made available to the public.

Health and Safety
During the course of construction, the Contractor will comply with all federal, state, and local laws governing safety, health, and sanitation. All reasonable safety considerations and safeguards necessary to protect the life and health of employees on the job, the safety of the public, and the protection of property in connection with roadway construction will be taken.

Pollution Control
Project construction will consist of roadways and bridges requiring excavation of unsuitable materials, placement of embankments, and the use of materials such as aggregates, bitumens, and Portland cement concrete. The stockpiling and disposal of the construction and excavation materials may be visually displeasing to some of the residents along the corridor. However, this will be a temporary condition and should pose no permanent problems with the use of the required temporary erosion control features. The Contractor will be responsible for his/her methods of placing the necessary features of pollution control on haul roads, borrow and other materials pits, areas used for the disposal of waste materials, and other potential pollutants (e.g. fuels) associated with the construction of the project. Temporary erosion control features will consist of berms, dikes, temporary seeding, sediment traps, fiber mats, silt fences, slope drains, mulches, crushed stone, and others, as specified in VDOT’s *Road and Bridge Specifications*.

Existing conditions that could pose problems to the constructibility of the project, such as large cuts and fills, rockfall areas, stream crossings, etc., will be handled individually during final design. The final alignment will be placed in the most practical location to avoid construction problem areas and sensitive
| CONSTRUCTION IMPACTS (Cont.) | natural resource areas. In-depth geotechnical research, reconnaissance, and core borings will be used to make sound engineering judgments to solve difficult construction problems as they arise. |