WHO IS TRAVELING ALONG I-395?

WHERE ARE THEY TRAVELING TO AND FROM?

HOW ARE THEY TRAVELING?

NORTHBOUND I-395 - NORTH OF GLEBE ROAD
AM PEAK PERIOD (6 AM - 9 AM)

HOV LANE VEHICLES

- 1 & 2 Persons: 60%
- 3+ Persons: 32%
- Buses: 8%

REGULAR LANE VEHICLES

- 1 & 2 Persons: 99%
- 3+ Persons, Buses, and Vans: 1%

PERSON TRIPS

- HOV Lanes
 - Vans: 2%
 - Buses: 6%
 - 1 & 2 Persons: 32%
 - 3+ Persons: 60%

- Regular Lanes
 - 1 & 2 Persons: 99%
 - 3+ Persons: 1%

Source: MWCOG Transportation Planning Board Travel Model
PROJECT BENEFITS

MOVING MORE PEOPLE

Move More People
- Move more than 10,000 additional people during PM peak period (north of Glebe Rd)
- Increase traffic in HOV lanes (future Express Lanes) by 35-50% during the PM peak period

Reduce Congestion
- Reduce travel times in the regular lanes by an average of 6 to 8 minutes

Expand Travel Choices
- Promote HOV throughout the day (currently no incentive to HOV during off-peak hours)
- Expand the regional Express Lanes network

Increase Reliability
- Provide reliable travel times for transit service to and from Pentagon
- Reduce congestion in HOV lanes (future Express Lanes) before and after current HOV restricted periods

Improve Safety
- Reduce the potential for congestion-related crashes

TRAVEL TIME SAVINGS

Travel times decrease 11 minutes from 8 AM to 10 AM

Travel times decrease 10 – 16 minutes from 4 PM to 6 PM
<table>
<thead>
<tr>
<th>Environmental Resource</th>
<th>Resource Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Impacts</td>
<td>No relocations or displacements; up to 5.30 acres of potential right of way acquisition and/or easements</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>No disproportionate impacts</td>
</tr>
<tr>
<td>Land Use, Community Facilities, and Recreational Resources</td>
<td>No substantial impacts</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No adverse effect; 5.91 acres of property may be impacted</td>
</tr>
<tr>
<td>Air Quality</td>
<td>No adverse impacts to ambient air quality and no violations of National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>Noise</td>
<td>Impact to 2,857 noise-sensitive receptors; 8.1 miles of barriers have preliminarily been identified as being feasible and reasonable</td>
</tr>
<tr>
<td>Wetlands and Streams</td>
<td>Impact to 0.004 acres of wetland</td>
</tr>
<tr>
<td>Floodplains</td>
<td>Impacts to 0.09 acres of 100-year floodplains and 0.01 acres of 500-year floodplains</td>
</tr>
<tr>
<td>Wildlife and Habitat</td>
<td>Minimal impact</td>
</tr>
<tr>
<td>Threatened, Endangered, and Special Status Species</td>
<td>No adverse effects to the northern long eared bat and the dwarf wedgemussel; anadromous fish use areas downstream of the study area may require time-of-year restrictions</td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>8 sites of elevated environmental concern; sites will be managed and handled in accordance with federal, state, and local procedures</td>
</tr>
<tr>
<td>Indirect and Cumulative Effects</td>
<td>Minimal impacts since the proposed improvements are to an existing facility in an environment that is highly developed</td>
</tr>
<tr>
<td>Section 4(f)</td>
<td>Not anticipated, if right of way impacts occur to 4(f) properties, impacts would likely be considered \textit{de minimis}</td>
</tr>
</tbody>
</table>
The goals of tonight’s meeting are:

- To provide updated project information on the proposed improvements
- To present the preliminary design
- To present the environmental analysis completed for this project
- To discuss findings and seek your formal comments on the project design, Environmental Assessment, and supporting documentation

Project Purpose and Need

Develop a transportation solution that improves roadway conditions throughout the corridor by:

- Reducing congestion
- Providing additional travel choices
- Improving travel reliability
- Improving roadway safety
I-395 HOV & EXPRESS LANES ACCESS POINTS

<table>
<thead>
<tr>
<th>Access Points</th>
<th>Existing Access</th>
<th>Future Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eads Street Ramps</td>
<td>See Eads Street Interchange Display Boards</td>
</tr>
</tbody>
</table>
| 2 | Washington Boulevard – South Facing Ramp | AM: NB from HOV lanes
PM: SB to HOV lanes | AM: NB from HOT lanes
PM: SB to HOT lanes |
| 3 | Shirlington Road – North Facing Ramp | AM: NB to HOV lanes
PM: SB from HOV lanes | AM: NB to HOT Lanes
PM: SB from HOT lanes |
| 4 | Seminary Road – North Facing Ramp | AM: NB to HOV lanes
PM: SB from HOV lanes | AM: NB to HOT lanes
PM: SB from HOT lanes |
| 4 | Seminary Road – South Facing Ramp | AM: NB from HOV lanes
PM: SB to HOV lanes | No change |
| 5 | Turkeycock Run (north of Edsall Road) | AM: NB access to and from HOV lanes
PM: SB access to and from HOV lanes | AM: NB access to and from HOT lanes
PM: SB access to and from HOT lanes |
EXPRESS LANES
How They Work

- Carpools (HOV-3), buses and motorcycles travel toll-free
- Drivers traveling alone or with one passenger have an option to pay a toll for a faster trip, even during rush hours
- Dynamic tolls adjust based on real-time traffic to keep drivers moving – tolls maintain highway speeds
- Current toll prices are displayed on signs before entry points
- E-ZPass is required for all drivers – HOV-3 travels free with E-ZPass Flex
- Rules of the road and tolls are in effect at all times
- Regular lanes remain free of charge at all times

EXPRESS LANES OPERATIONS CENTER
- Real-time data is collected
- Information is analyzed and a toll is calculated and displayed on the pricing signs
- The pricing ensures free-flowing travel speeds

MANAGING TRAFFIC
- There are federal requirements to maintain minimum travel speeds and therefore there is no maximum toll rate
- Dynamic tolls help to ensure requirements are met
- Tolls during off-peak hours cover operating and maintenance costs

SENSORS
- Sensors will be located approximately every 1/3 mile
- Sensors measure traffic volumes, speeds and how crowded the lanes are

TOLL PRICES
- On-road technology collects data to price specific trips
- As traffic increases, toll prices increase to manage demand
- Toll prices adjust as often as every 15 minutes

NORTHERN EXTENSION
I-395 EXPRESS LANES
NOISE ANALYSIS PROCESS

Identify noise receptors
- Identify Common Noise Environments (CNE) (typically within 500 feet of the highway)
- Identify noise sensitive receptors within each CNE

Perform noise modeling
- Develop noise models of existing and future roadway conditions using computer modeling (incorporates roadway design, traffic volumes and speed, receptors, topography, and ground type)
- Validate model with noise measurements data
- Compute existing, no-build and build design-year sound levels

Identify impacts (is noise mitigation warranted?)
- Approach or exceed Federal Highway Administration (FHWA) noise abatement criteria (i.e., 67 decibel (dB) for residences, parks, schools) or,
 - 10 dB increase above existing year sound levels

Design and assess mitigation (typically noise walls)

Is the wall feasible?
- Does it work acoustically (do 50% or more of the impacted receptors receive a 5 dB or more noise reduction)
- Can it be constructed (e.g. are there safety, drainage, utilities, maintenance issues)

Is the wall reasonable?
- Cost-effectiveness (1,600 maximum square feet or less per benefited receptor)
- Design goal (Provide at least 7 dB or more of noise reduction for at least one impacted receptor)

Present noise study results and preliminary noise wall locations at public meetings

Complete final design noise analysis once the project has received design approval

Obtain VDOT Chief Engineer approval

Obtain FHWA concurrence

Solicit public input from benefited property owners and renters (voting process)

Incorporate approved noise wall(s) into the final road design construction plans

Timeline

- **April / May 2016**
 - Identify noise receptors
 - Perform noise modeling
- **June / July 2016**
 - Identify impacts (is noise mitigation warranted?)
- **August 2016**
 - Design and assess mitigation (typically noise walls)
- **Oct./Nov. 2016**
 - Present noise study results and preliminary noise wall locations at public meetings
- **2017**
 - Complete final design noise analysis once the project has received design approval
Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin NEPA - Environmental Assessment</td>
<td>January</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin Transit / TDM Study</td>
<td>April</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Information Meetings</td>
<td>April 11 & 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Meetings</td>
<td>October 24 & 26 & November 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Transit / TDM Study</td>
<td>December</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final NEPA Decision</td>
<td>January</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Fall</td>
<td></td>
<td></td>
<td>Fall</td>
</tr>
</tbody>
</table>