APPENDIX A(1)

VDOT Complete Streets: Bicycle and Pedestrian Facility Guidelines, Bus Stop Design and Parking Guidelines
This page is intentionally left blank
APPENDIX A(1) VDOT COMPLETE STREETS:  
BICYCLE & PEDESTRIAN FACILITY GUIDELINES, BUS STOP DESIGN AND PARKING GUIDELINES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A(1)-1</td>
</tr>
<tr>
<td>SECTION 1 BICYCLE AND PEDESTRIAN FACILITY GUIDELINES</td>
<td>A(1)-3</td>
</tr>
<tr>
<td>VDOT Policy to Improve Bicycle and Pedestrian Access</td>
<td>A(1)-3</td>
</tr>
<tr>
<td>Planning and Design of Bicycle Facilities</td>
<td>A(1)-8</td>
</tr>
<tr>
<td>Bicycle Access Facilities</td>
<td>A(1)-8</td>
</tr>
<tr>
<td>Existing Roads</td>
<td>A(1)-8</td>
</tr>
<tr>
<td>Major Developments and Site Plans</td>
<td>A(1)-9</td>
</tr>
<tr>
<td>Selecting Roadway Design Treatments to Accommodate Bicycles</td>
<td>A(1)-9</td>
</tr>
<tr>
<td>Design Criteria</td>
<td>A(1)-11</td>
</tr>
<tr>
<td>Design Guidelines</td>
<td>A(1)-16</td>
</tr>
<tr>
<td>Shared Roadway (Lanes)</td>
<td>A(1)-16</td>
</tr>
<tr>
<td>Signed Shared Roadways</td>
<td>A(1)-18</td>
</tr>
<tr>
<td>Bike Lanes</td>
<td>A(1)-18</td>
</tr>
<tr>
<td>Buffered Bike Lanes</td>
<td>A(1)-23</td>
</tr>
<tr>
<td>Separated Bike Lanes</td>
<td>A(1)-23</td>
</tr>
<tr>
<td>Shared Use Paths</td>
<td>A(1)-24</td>
</tr>
<tr>
<td>AASHTO Approved Interstate Bicycle Routes</td>
<td>A(1)-43</td>
</tr>
<tr>
<td>Trails and Trailheads</td>
<td>A(1)-45</td>
</tr>
<tr>
<td>Rails – with – Trails</td>
<td>A(1)-48</td>
</tr>
<tr>
<td>SECTION 2 – PEDESTRIAN ACCESS ROUTES (SIDEWALK OR SIDEWALK SPACE) AND CURB RAMPS</td>
<td>A(1)-51</td>
</tr>
<tr>
<td>Pedestrian Access Route</td>
<td>A(1)-51</td>
</tr>
<tr>
<td>Design Criteria</td>
<td>A(1)-53</td>
</tr>
<tr>
<td>Crosswalks (Pedestrian Street Crossings)</td>
<td>A(1)-56</td>
</tr>
<tr>
<td>Curb Ramps</td>
<td>A(1)-57</td>
</tr>
<tr>
<td>Design Guidelines for Curb Ramps</td>
<td>A(1)-58</td>
</tr>
<tr>
<td>Guidelines for Curb Ramp Locations</td>
<td>A(1)-58</td>
</tr>
<tr>
<td>Maximum Reach Range</td>
<td>A(1)-59</td>
</tr>
<tr>
<td>Curb Ramp Elements</td>
<td>A(1)-60</td>
</tr>
<tr>
<td>Curb Ramp Types</td>
<td>A(1)-61</td>
</tr>
<tr>
<td>Curb Ramp Application Details</td>
<td>A(1)-64</td>
</tr>
<tr>
<td>Alteration Projects that Affect Curb Ramps</td>
<td>A(1)-67</td>
</tr>
<tr>
<td>Alteration Project types</td>
<td>A(1)-68</td>
</tr>
<tr>
<td>Curb Ramps Alteration Projects</td>
<td>A(1)-68</td>
</tr>
<tr>
<td>Crosswalks (Pedestrian Street Crossings) Alteration Projects</td>
<td>A(1)-69</td>
</tr>
<tr>
<td>CG-12 Curb Ramp (Retrofit) into Existing Curb and Gutter and/or Sidewalk Locations</td>
<td>A(1)-70</td>
</tr>
<tr>
<td>Alteration projects using Diagonal or Corner Type Curb Ramp</td>
<td>A(1)-76</td>
</tr>
</tbody>
</table>
SECTION 3 PARKING DESIGN FEATURES ........................................... A(1)-85
On-Street Parking ................................................................. A(1)-85
Off Street and Park and Ride Lots ........................................... A(1)-92
Accessible Parking Spaces ..................................................... A(1)-95
Rest Areas ............................................................................... A(1)-103

SECTION 4 TRANSIT (BUS) FACILITIES DESIGN CRITERIA .......... A(1)-109
Bus Turnout (Bus Stop) Design: Location, Type and Dimensions ...... A(1)-109
Bus (Transit) Stops, Shelters, Boarding and Alighting Areas ......... A(1)-114
Signs and Benches ..................................................................... A(1)-114
Transportation Facilities (Rail Platforms, Station Signs) ............... A(1)-120

LIST OF FIGURES
Section 1
Figure A(1)-1* Bike Lanes with On-Street Parking ............................ A(1)-19
Figure A(1)-2* Bike Lanes without On-Street Parking Stripe or Stall . A(1)-19
Figure A(1)-3* Bike Lanes without On-Street Parking .................... A(1)-20
Figure A(1)-4* Bike Accommodations Within Paved Shoulder Limits . A(1)-20
Figure A(1)-5* Right Turn Only Lane ........................................ A(1)-22
Figure A(1)-6* Typical Section of Shared Use Path with Roadway Signs and Shared Use Path Signs ............................................. A(1)-25
Figure A(1)-7* Cross Section of Two-Way Shared Use Path .......... A(1)-27
Figure A(1)-8 Physical Barrier for Shared Use Path ........................ A(1)-29
Figure A(1)-9* Minimum Lateral Clearance for Horizontal Curves ..... A(1)-36
Figure A(1)-10 Detectable Warning Surface for Shared Use Path with Shoulders A(1)-38
Figure A(1)-11* St’d. CG-12 Type B for Shared Use Path with Curb & Gutter A(1)-38
Figure A(1)-12* Shared Use Path Pavement Structure .................. A(1)-40
Figure A(1)-13 Shared Use Path Transition From Road to Bridge: Design Speed >45 mph A(1)-42
Figure A(1)-14 Interstate Bicycle Routes ...................................... A(1)-44
Figure A(1)-15* Separation Between Active Rail Lines and Paths (RWT) A(1)-48

Section 2
Figure A(1)-16 Perpendicular CG-12 Type A ................................ A(1)-61
Figure A(1)-17 Parallel CG-12 Type B .......................................... A(1)-62
Figure A(1)-18 Parallel and Perpendicular CG-12 Type C ............... A(1)-63
Figure A(1)-19 Two CG-12 Type B for Each (PEDESTRIAN STREET CROSSING) A(1)-64
Figure A(1)-20 CG-12 Type B Layout Without Buffer Strip .......... A(1)-65
Figure A(1)-21 CG-12 Type B Layout with Buffer Strip ................ A(1)-66
Figure A(1)-22 Single (Diagonal or Corner Type) Perpendicular Curb Ramp CG-12 Type A ......................................................... A(1)-77
Section 3
Figure A(1)-28 Design for Accessible Parallel Parking Spaces ......................... A(1)-88
Figure A(1)-29 Design for Accessible Parallel Parking Space Exception ............... A(1)-88
Figure A(1)-30 Perpendicular Accessible Parking Spaces Passenger and Loading Zones ................................................................. A(1)-89
Figure A(1)-31 Angled Accessible Parking Spaces ........................................ A(1)-90
Figure A(1)-32 Access Aisle ......................................................................... A(1)-91
Figure A(1)-33* Vehicle (Car and Van) Parking Spaces ............................... A(1)-96
Figure A(1)-34 Parking Space Access Aisle .................................................. A(1)-97
Figure A(1)-35 Accessible Parking Space with Access Aisle for Cars and Trucks ... A(1)-98
Figure A(1)-36 Van Accessible Parking with Access Aisle (Preferred) .......... A(1)-99
Figure A(1)-37* Van Accessible Parking with Access Aisle (Optional) ......... A(1)-99
Figure A(1)-38 Accessible Parking Space with Access Aisle for Cars, Trucks and Vans ... A(1)-100
Figure A(1)-39 Passenger Loading Zone Access Aisle .................................. A(1)-102
Figure A(1)-40 Parking Space Design and Arrangements for Parking Lots / Park & Ride Lots ................................................................. A(1)-104
Figure A(1)-41 Parking Space Design and Arrangements for Rest Areas .......... A(1)-105
Figure A(1)-42 Examples of Site Layouts for Rest Areas ................................ A(1)-106
Figure A(1)-43 Parking Space Design for Angle Parking of Trucks .............. A(1)-108

Section 4
Figure A(1)-44 Bus Turnout on Far Side (Closed) ......................................... A(1)-110
Figure A(1)-45 4 Bus Turnout on Far Side (Open) ..................................... A(1)-111
Figure A(1)-46 Bus Turnout on Near Side .................................................. A(1)-112
Figure A(1)-47 Boarding and Alighting Areas ............................................ A(1)-115
Figure A(1)-48 Elements and Dimensions Associated with Bus (Transit) Stops ... A(1)-117
Figure A(1)-49 Off-Road Separated Bike Lane with Sidewalk ..................... A(1)-118
Figure A(1)-50 Typical Bus (transit) Shelter .............................................. A(1)-119

LIST OF TABLES
Section 1
Table A(1)-1 Bicycle Facility Design for Curb and Gutter ............................. A(1)-14
Table A(1)-2 Bicycle Accommodation / Facility Design for Shoulder and Ditch Typical Section ............................................................. A(1)-15
Table A(1)-3 Minimum Radii for Paved Shared Use Paths Based on 20° Lean Angle ... A(1)-31
Table A(1)-4 Minimum Stopping Sight Distance - Descending Grade ............ A(1)-33
Table A(1)-5* Minimum Stopping Sight Distance - Ascending Grade ............ A(1)-34
Table A(1)-6* Minimum Length of Crest Vertical Curve (L) Based on Stopping Sight Distance .......................................................................................................................... A(1)-35
Table A(1)-7* Minimum Lateral Clearance for Horizontal Curves........................................ A(1)-36
Table A(1)-8* Separation Between Active Rail Lines and Path (RWT)................................. A(1)-49

Section 3
Table A(1)-9* On-Street Parking Spaces............................................................................. A(1)-86
Table A(1)-10 Off-Street and Park & Ride Lot Parking Spaces.......................................... A(1)-94
APPENDIX A(1)

INTRODUCTION

A Complete Streets Policy is a transportation policy and design approach that requires streets to be planned, designed, operated, and maintained to enable safe, convenient and comfortable travel and access for users “of all ages and abilities” regardless of their mode of transportation. Complete Streets allow for safe travel by those walking, cycling, driving automobiles, riding public transportation, or delivering goods.

Although the guiding principle for complete streets is to create streets and related infrastructure that provide safe travel for all users, each complete street has to be customized and characterized by their surrounding environment and how the street fits into the community. A complete street also has to accommodate the needs and expectations of the travelers who want to access or pass through the surrounding neighborhood, community, or region.

According to the National Complete Streets Coalition, typical elements that make up a complete street include sidewalks, bicycle lanes (or wide, paved shoulders), shared-use paths, designated bus lanes, safe and accessible transit stops, and frequent and safe crossings for pedestrians, including crosswalks, median refuge islands, accessible pedestrian signals, and curb extensions. Certainly, a design for a complete street in a rural context will look quite different from one in a suburban or urban context. For example, a complete street in a rural context could involve providing wide shoulders or a shared-use path instead of sidewalks. The common denominator, however, is balancing safety and convenience to accommodate all current and anticipated users.

Transit Buses can become a more attractive option when access points that comply with the requirements of the Americans with Disabilities Act are integrated into streets, sidewalks, and parking areas to allow easier, safer access for users “of all ages and abilities”.

The benefits of complete streets include:

- Making it easier for travelers to get where they need to go;
- Encouraging the use of alternative forms of transportation;
- Building more sustainable communities;
- Increasing connectivity between neighborhoods, commercial areas, streets, and transit systems;
- Improving safety for pedestrians, cyclists, and motorists.

VDOT will collaborate with localities (cities, counties, and towns), and communities as well as Transportation Planning Organizations (TPO), Metropolitan Planning Organizations (MPO) and Planning District Commissions (PDC’s) during the planning and design phases of new and reconstructed street projects. Together, they will decide how to provide the appropriate transportation facility needed to serve the community and complement the surrounding environment. This policy builds on current VDOT policies and guidelines and encourages creativity for considering and providing multi-modal options within transportation projects, while achieving safety and efficiency.

* Added 7/18
Specific VDOT Policies and Guidelines includes:

- CTB Bicycle and Pedestrian Accommodation Policy, March 2004  

- VDOT Instructional and Informational Memorandum, IIM-LD-55 (Curb Ramps and Sidewalks)  

- VDOT Instructional and Information Memorandum, IIM-TE-384 (Pedestrian Crossing Accommodations at Unsignalized Locations)  

- Multimodal System Design Guidelines  

- VDOT Instructional and Information Memorandum, IIM-TMPD-1.0 (Implementation of the CTB Policy for Integrating Bicycle and Pedestrian Accommodations)  
  [http://www.virginiadot.org/business/transportation_and_mobility_planning_division_instructional_and_informational_memoranda.asp](http://www.virginiadot.org/business/transportation_and_mobility_planning_division_instructional_and_informational_memoranda.asp)

- VDOT Pedestrian Safety Action Plan  

- VDOT State Bicycle Policy Plan  

- VDOT State Pedestrian Policy Plan  

- VDOT Biking and Walking Web Page  

Resources:

- FHWA Public Roads, July-August 2010  
  - [https://www.fhwa.dot.gov/publications/publicroads/10julaug/03.cfm](https://www.fhwa.dot.gov/publications/publicroads/10julaug/03.cfm)

- Florida DOT Complete Street Implementation Web Page  
  - [http://www.fdot.gov/roadway/csi/default.shtm](http://www.fdot.gov/roadway/csi/default.shtm)

- National Complete Streets Coalition  
  - [https://smartgrowthamerica.org/program/national-complete-streets-coalition/](https://smartgrowthamerica.org/program/national-complete-streets-coalition/)

- NCDOT Complete Streets Planning and Design Guidelines  
  - [Complete Streets Guidelines (pdf)](https://www.ncdot.gov/)

- Smart Growth America: Complete Streets Local Policy Workbook  
  - [https://smartgrowthamerica.org/resources/complete-streets-local-policy-workbook/](https://smartgrowthamerica.org/resources/complete-streets-local-policy-workbook/)

- Washington State DOT Complete Streets  
  - [https://www.wsdot.wa.gov/LocalPrograms/ATP/CompleteStreets.htm](https://www.wsdot.wa.gov/LocalPrograms/ATP/CompleteStreets.htm)

* Added 7/19
SECTION 1  BICYCLE AND PEDESTRIAN FACILITY GUIDELINES

VDOT POLICY TO IMPROVE BICYCLE AND PEDESTRIAN ACCESS

On March 18, 2004, the Commonwealth Transportation Board (CTB) approved and adopted a policy aimed at providing bicyclists and pedestrian’s greater access to safe transportation on roadways across the state. This policy shall supersede all current department policies and procedures related to bicycle and pedestrian accommodations.

Highlights from the policy include:

- A framework through which VDOT will accommodate bicyclists and pedestrians, including pedestrians with disabilities, along with motorized transportation modes in the planning, funding, design, construction, operation, and maintenance of Virginia’s transportation network to achieve a safe, effective, and balanced multimodal transportation system.

- Sidewalks, bike lanes, shared-use paths or other accommodations will be considered in the design of all new highway and major reconstruction projects, depending on safety issues and the need.

Project Managers should be familiar with the policy prior to starting the Project Development Process. The entire policy can be obtained at https://www.virginiadot.org/programs/bikeped/2004_ctb_policy.asp.

The following are a few excerpts from the policy:

The Virginia Department of Transportation (VDOT) will initiate all highway construction projects with the presumption that the projects shall accommodate bicycling and walking. VDOT will provide the leadership to implement this policy. During the decision process, the project manager and local representatives will, based on the factors listed in the policy, develop a recommendation on how and whether to accommodate bicyclists and pedestrians in a construction project prior to the public hearing. VDOT will promote the inclusion of bicycle and pedestrian accommodations in transportation planning activities at local, regional, and statewide levels. There are exceptions to the provision of accommodations.

Bicycle and pedestrian accommodations can be developed through projects that are independent of highway construction either within the highway right-of-way or on an independent right-of-way. Highway construction funds can be used to build bicycle and pedestrian accommodations either concurrently with highway construction projects or as independent transportation projects. Both types of bicycle and pedestrian accommodation projects will be funded in the same manner as other highway construction projects for each system (i.e., interstate, primary, secondary, or urban).
VDOT will work with localities (cities, counties, and towns), and communities as well as Transportation Planning Organizations (TPO), Metropolitan Planning Organizations (MPO) and Planning District Commissions (PDC’s) to select and design accommodations, taking into consideration community needs, safety, and unique environmental and aesthetic characteristics as they relate to specific projects. The selection of the specific accommodations to be included in a project shall be based on the application of appropriate planning design, and engineering principles.


Below are additional nationally recognized resources to build upon the flexibilities provided in the AASHTO guides, which can help communities plan and design safe and convenient facilities for pedestrians, bicyclists and transit users.

On August 20, 2013 FHWA issued a Memorandum expressing support for taking a flexible approach to bicycle and pedestrian facility design. In doing so, FHWA supports the use of The National Association of City Transportation Officials (NACTO) NACTO Urban Bikeway Design Guide and the ITE Designing Urban Walkable Thoroughfares: A context Sensitive Approach to build upon the flexibilities provided in the AASHTO guides, which can help communities plan and design safe and convenient facilities for pedestrians and bicyclists.

On July 25, 2014, FHWA's Offices of Planning, Environment, and Realty; Infrastructure; Safety; and Operations jointly issued a Memorandum announcing their official support and endorsement of NACTO Urban Street Design Guide.

In May 2015, FHWA released the Separated Bike Lane Planning and Design Guide, which outlines planning considerations for separated bike lanes (also sometimes called “cycle tracks” or “protected bike lanes”) and provides a menu of design options covering typical one and two-way scenarios. The guide consolidates lessons learned from practitioners designing and implementing separated bike lanes throughout the U.S.

In March 2016, ITE released Recommended Design Guidelines to Accommodate Pedestrians and Bicycles at Interchanges: An ITE Recommended Practice.

On April 21, 2016, NACTO released the NACTO Bike Share Station Siting Guide which highlights best practices in station placement and design. This Guide is a highly useful resource for bike share planners and operators, providing clear standards for how and where to install bike share stations. This Guide is also a complement to NACTO's successful Urban Bikeway Design Guide and Urban Street Design Guide.

* Rev. 7/19
In August 2016, FHWA released *Achieving Multimodal Networks: Applying Design Flexibility and Reducing Conflicts* which highlights ways that planners and designers can address common roadway challenges and barriers by focusing on reducing multimodal conflicts achieving connected networks so that walking and bicycling are safe, comfortable and attractive options for people of all ages and abilities. All of these guides build upon the flexibilities provided in the AASHTO Guides and are designed to help municipalities consider, evaluate and design a complete street network.

On October 13, 2016, NACTO and the Global Designing Cities Initiative unveiled the *NACTO Global Street Design Guide*, the first-ever worldwide standard for redesigning city streets to prioritize safety, pedestrians, transit and sustainable mobility for an urban century. The Global Street Design Guide establishes a global baseline for designing streets and public spaces while redefining the role of streets in a rapidly urbanizing world. The Guide broadens how to measure the success of urban streets to include access, safety and mobility for all users, environmental quality, economic benefit, public health and overall quality of life.

In July 2017, ITE released *Protected Bikeways Practitioners Guide* to provide transportation professionals with an easy-to-navigate document for planning, designing, operating, and implementing protected bikeways in the United States and Canada.

The 2017 Act of the General Assembly passed HB 2023, which allows Road Diets to be implemented statewide without the loss of maintenance payments provided certain criteria are met. § 33.2-319 of the Code of Virginia was amended and reenacted.

The following resources are available:

- [FHWA Road Diet Informational Guide](#)
- [FHWA Incorporating On-Road Bicycle Networks into Resurfacing Projects](#)

In August 2017, ITE released the *Protected Bikeways Practitioners Guide*, developed by the ITE Complete Street Council with support from ITE Technical Programs Division staff. The Guide is intended to provide transportation professionals with an easy to navigate document for planning, operating and implementing protected bikeways in the United States and Canada. The Guide also provides references to the critical design standards and guidelines that direct the geometric and operational design of protected bikeways, including international best practices and research and fills current design gaps in guidance based on best practice example.

In August 2017, the Federal Transit Administration (FTA) released the *Manual on Pedestrian and Bicycle Connections to Transit*, which provides a compendium of best practices to assist transportation professions improve pedestrian and bicycle safety and access to transit, including information on evaluating, planning for, and implementing improvements to pedestrian and bicycle access to transit.


---

* Rev. 1/18
This Document captures the national state of the practice for accommodating pedestrians with vision disabilities on shared streets, helps State and local partners meet Americans with Disabilities Act (ADA) obligations, and serves as a model for engaging people with disabilities in the planning process. This document focuses on accessibility, specifically on streets where pedestrians, bicyclists, and motor vehicles are intended to mix in the same space rather than streets that lack curbs but are not intended to encourage this mixing, such as curbless streets.

On November 14, 2017, the Pedestrian and Bicycle Information Center (PBIC) updated the Design Resource Index that identifies the specific location of information in key national design manuals for various pedestrian and bicycle design treatments. The Design Resource Index aims to help practitioners quickly access resources and reduce the amount of time for design guide searches.

On November 29, 2017, ITE released Implementing Context Sensitive Design on Multimodal Corridors: A Practitioner’s Handbook. This informational report was developed through an external contract with the FHWA Office of Human Environment, supported by ITE Technical Programs Division staff, which complements ITE’s 2010 “Designing Walkable Urban Thoroughfares” recommended practice. It is geared towards practitioners facing safety and mobility challenges in urban and suburban spaces. It distills the latest research, evidence, and case studies that practitioners need to advance their projects and focuses upon thoroughfares, or arterial and collector roadways, which are often the most challenging streets to redesign.

In December 2017, The National Association of City Transportation Officials (NACTO) released Designing for All Ages & Abilities: Contextual Guidance for High-Comfort Bicycle Facilities that examines criteria for implementing bicycle infrastructure and facilities. This report considers factors including vehicle speeds and volumes, operational uses, and observed sources of bicycling stress. This report builds on NACTO Urban Street Design Guide and sets an All Ages & Abilities criteria for selecting and implementing bike facilities.

In February 2018, FHWA released FHWA Guidebook for Measuring Multimodal Network Connectivity. This resource focuses on pedestrian and bicycle network connectivity and provides information on incorporating connectivity measures into state, metropolitan, and local transportation planning processes.

In July 2018, FHWA Updated the Guide for Improving Pedestrian Safety at Uncontrolled Locations that was released in January 2018. This guide assists state and local transportation or traffic safety departments that are considering developing a policy or guide to support the installation of countermeasures at uncontrolled pedestrian crossing locations. This document provides guidance to agencies, including best practices for each step involved in selecting countermeasures. By focusing on uncontrolled crossing locations, agencies can address a significant national safety problem and improve quality of life for pedestrians of all ages and abilities. Agencies may use this guide to develop a customized policy or to supplement existing local decision-making guidelines. This version has been updated to include the Rectangle Rapid-Flashing Beacon (RRFB). FHWA issued a new Interim Approval (IA-21) for the use of RRFBs in March 2018.∗

In July 2018, FHWA updated the Field Guide for Selecting Countermeasures at Uncontrolled Pedestrian Crossing Locations that was originally released in January 2018. This field guide

∗ Rev. 1/19
helps agencies select pedestrian crash countermeasures based on criteria established in published literature, best practices, and national guidance. This guide includes a form that the agency may use to document roadway characteristics and pedestrian safety issues. It also tables that relate these documented conditions to a specific set of countermeasure options. A series of descriptions lead the agency through additional installation considerations for each countermeasure.

This version has also been updated to include the Rectangle Rapid-Flashing Beacon (RRFB). FHWA issued a new Interim Approval (IA-21) for the use of RRFBs in March 2018.

In November 2018, the ITE Complete Streets Council released the Curbside Management Practitioners Guide in response to widespread interest in the designation and optimization of curb space to accommodate the needs of all users. The purpose is to outline a decision-making framework that can be applied across a broad spectrum of locations and contexts.

In February 2019, FHWA released the Bikeway Selection Guide to help transportation practitioners consider and make informed trade-off decisions relating to the selection of bikeway types. It is intended to supplement planning and engineering judgement. It incorporates and builds upon the FHWA support for design flexibility to assist transportation agencies in the development of connected, safe, and comfortable bicycle networks that meet the needs of people of all ages and abilities. The FHWA Bikeway Selection Guide can be accessed at https://safety.fhwa.dot.gov/ped_bike/tools_solve/docs/fhwasa18077.pdf

On May 20, 2019, NACTO released Don’t Give Up at the Intersection, which includes best practices for next-generation intersection designs that save lives and make walking and biking more comfortable for people of all ages and abilities. The new guidance expands the groundbreaking NACTO Urban Bikeway Design Guide with new diagrams detailing intersection design treatments and signal strategies that reduce vehicle-bike and vehicle-pedestrian conflicts.

The guidance, funded by Knight Foundation, uses three principles to enhance safety at the intersection, where conflicts between street users are most frequent: Reduce turning speeds, Make bikes and pedestrians visible and Give bikes the right of way.

* Rev. 7/19
PLANNING AND DESIGN OF BICYCLE FACILITIES

During project scoping/SMART Scale application development the VDOT District Planner will coordinate with the locality to address bicyclist and pedestrian access along the corridor as well as to existing and planned transit connections.

During the preparation of an environmental document, environmental impact statement (EIS), environmental assessment (EA), categorical exclusion (CE), programmatic categorical exclusion (PCE), etc. VDOT will consider the current and anticipated future use of the affected facilities by bicyclists and pedestrians, the potential impacts of the alternatives on bicycle and pedestrian travel, and proposed measures, if any, to avoid or reduce adverse impacts to the use of these facilities by bicyclists and pedestrians.

Discussion will take place at the scoping meeting concerning the expected type of bicyclist that will use the facility and the type of facility to be designed. The District, Transportation and Mobility Planning Division, Locality and other interested parties will provide input on the type of facility to be designed on a particular project. Individuals involved in the planning and design of bicycle facilities should be familiar with the resources mentioned in the previous section titled: “VDOT POLICY TO IMPROVE BICYCLE AND PEDESTRIAN ACCESS”.

The procedure for planning and designing a bicycle facility is based on the following:

1. Roadway typical section
2. Motor vehicle traffic volume (ADT)
3. Design or posted speed of the roadway

The Guidelines and Tables in selecting roadway design treatments to accommodate bicycles are recommended as bicycle facility design criteria, but in no case should a bicycle facility be designed with criteria less than those contained in the VDOT, AASHTO, and NACTO Design Guidelines.

BICYCLE ACCESS FACILITIES

VDOT may participate in the development of bicycle access facilities (Shared Use Paths and Trails) to serve public recreational areas, such as county and state parks and historic sites based on the current Recreational Access Fund Policy located in the Recreational Access portion of the Local Assistance Division Website.

EXISTING ROADS

In some instances, for route continuity, bicycle facilities may be routed over existing facilities which are not planned for expansion. In these cases, the facilities are an operational feature and usually result in the identification of a bike lane, restriction of parking, or some other physical modification to accommodate bicycle travel. It is necessary for the State Transportation and Mobility Planning Division Administrator to coordinate with the District Planner, District Traffic Engineer, and appropriate Divisions in the Central Office to assure agreement on the method of treatment for a bikeway over an existing route.
MAJOR DEVELOPMENTS AND SITE PLANS

When bicycle facilities are considered as part of the total development of a property where the road system will be maintained in the future by VDOT and the local government requires bicycle facilities in new developments, the following conditions must be satisfied:

- The bicycle element of the entire plan for the development must be reviewed and approved by the local government prior to final approval by the District Transportation Land Use Director or designee. Appropriate review must be made, and communication regarding the resolution of bicycle facility systems must be carried on between the District Transportation Land Use Director, District Planner and the responsible District Traffic Engineer.

- Along any roadways identified in the site plan, which will be maintained in the future by VDOT, a bicycle facility may be incorporated into the development parallel to but off of the right of way dedicated for street purposes. The maintenance and the responsibility for operating the bicycle facility would fall on the owner, which would be the locality, the developer, or other entity with the responsibility of maintenance of the common land of the development and not the responsibility of VDOT. The bicycle facility right of way will be exclusive of the roadway right of way; thus, future changes and/or modifications in the bicycle facility would not be the responsibility of VDOT.

- Bicycle facilities within the VDOT right of way shall be designed in accordance with the resources and guidelines discussed in the sections titled: “VDOT POLICY TO IMPROVE BICYCLE AND PEDESTRIAN ACCESS” and “SELECTING ROADWAY DESIGN TREATMENTS TO ACCOMMODATE BICYCLES”.

For major developments and site plans where the roadway system will not be maintained in the future by VDOT, all bicycle facility connections to VDOT maintained facilities shall be subject to review and approval by the District Transportation Land Use Director or designee.

SELECTING ROADWAY DESIGN TREATMENTS TO ACCOMMODATE BICYCLES

Choosing the appropriate bicycle facility type is important. No one type of bicycle facility or highway suits every bicyclist. Within any given transportation corridor, bicyclists may be provided with more than one option to meet the travel and access needs of all potential users.

The choice of highway design will affect the level of use, the types of user that can be expected to use any given road and the level of access and mobility that is afforded bicyclists. For example, a four-lane divided highway with 12-foot travel lanes, no shoulder and a 55 mph speed limit will attract only the most confident of riders. The same road with a 5-foot shoulder or bike lane might provide sufficient “comfortable operating space” for many more adult riders, but would still not be comfortable for children or less confident adults. This latter group might only be accommodated through an alternative route using neighborhood streets linked by short sections of a shared use path. If such an alternative route is provided and the four-lane road has a continuous paved shoulder, most experienced and many casual adult riders will continue to use the shoulder for the sake of speed and convenience.

Facilities for bicyclists should also be planned to provide continuity and consistency for users “of all ages and abilities”. Children using a bicycle facility to get to school should not have to

* Rev. 7/18
cross a major arterial without some type of intersection control(s). Shoulders and bike lanes should **not** end abruptly and unannounced at a difficult intersection or busy stretch of highway.

The selection of a bicycle facility type is dependent on many factors, such as the roadway typical section, motor vehicle traffic volume (ADT), design speed or posted speed of the roadway as well as the age and ability of the users and the specific corridor conditions.

AASHTO and FHWA designates bicycle facility types as Shared Lanes (No Use of Bikeway Designation Markings or Signs), Signed Shared Roadway (Designated by Bicycles “May Use Full Lane” Signs), Marked Shared Roadway (Designated by Shared Lane Markings “Sharrows” if the roadway posted speed is equal to or less than 35 mph), Bike Lane (Designated as such by Markings and Signs), Shared Use Path, Separated Bike Lane (Designated as such by Markings and Signs) and Paved Shoulders (Delineating (marking and signing) a Bike Lane within the limits of the required paved shoulder area is **not** permitted).

The following are explanations of when and why each of these facilities may be appropriate. Design parameters for these facilities are discussed later in this section.

- **Shared Roadway (Lanes) (Not designated by Markings or Signs as a Bikeway)** - Most bicycle travel in the United States now occurs on streets and highways without bikeway designations. In some instances, a community’s existing street system may be fully adequate for safe and efficient bicycle travel and signing and striping for bicycle use may be unnecessary. In other cases, some streets and highways may be unsuitable for bicycle travel at present, and it would be inappropriate to encourage bicycle travel by designating the routes as bikeways. Finally, some routes may not be considered high bicycle demand corridors, and it would be inappropriate to designate them as bikeways regardless of roadway conditions (e.g., minor residential streets).

- Some rural highways are used by touring bicyclists for recreational travel. In most cases, such routes should only be designated as bikeways where there is a need for enhanced continuity with other bicycle routes. However, the development and maintenance of 4foot paved shoulders with a 4 inch edge stripe can significantly improve the safety and convenience of bicyclists and motorists along such routes.

- **Wide Curb/Outside Lanes** – Allows motorist to pass bicyclists without encroaching into the adjacent lane. Also provides additional usable width on sections with steep grades or on sections where drainage grates, raised delineators, or on-street parking effectively reduces the usable width. A wide curb/outside lane is at least 14 feet, but not greater than 15 feet.

- **Signed Shared Roadway** – Signed shared roadways are designated by Bicycles “May Use Full Lane” signs, bike route signs, and serve either to provide continuity to other bicycle facilities (usually Bike Lanes) or designate preferred routes through high-demand corridors.

- **Marked Shared Roadway** – Marked Shared Roadways are designated by Shared Lane Markings “Sharrows” and are to be only be used when the roadway posted speed is equal to or less than 35 mph. The markings serve to provide a higher level of guidance to bicyclists and motorists sharing the roadway as well as alerting motorists to the lateral position bicyclists are likely to occupy within the traveled roadway.

* Rev. 7/18
- **Bike Lane** - A portion of the roadway designated by striping, signing, and pavement markings for preferential or exclusive use by bicyclists. They are one-way facilities that carry bicycle traffic in the same direction as adjacent motor vehicle traffic. Bike lanes have horizontal separation (i.e. pavement markings, such as 4” or 6” solid white lines) but do not have vertical separation between the bike lane and the vehicle travel lane and/or parking lane.

- **Buffered Bike Lane** – Bike lanes with horizontal separation (i.e. additional pavement markings, such as a painted buffer), but without vertical separation between the bike lane and vehicle lane and/or parking lane.

- **Separated Bike Lane** - A facility (also sometimes called “cycle track” or “protected bike lanes”) located within or directly adjacent to the roadway that has both horizontal separation (i.e. additional pavement markings, such as a painted buffer) and vertical separation (i.e. flexible delineators, curb medians, on-street parking, landscaping) between the bike lane and vehicle travel lane and/or parking lane. They are differentiated from bike lanes and buffered bike lanes by the vertical separation mentioned above and differentiated from shared use paths by their more proximate relationship to the adjacent roadway and the fact that they are bike-only facilities. See FHWA Separated Bike Lane Planning and Design Guide, which outlines planning considerations for separated bike lanes and provides a menu of design options covering typical one and two-way scenarios. The guide consolidates lessons learned from practitioners designing and implementing separated bike lanes throughout the U.S.

- **Shared Use Path** - Generally, shared use paths should be used to serve corridors not served by streets and highways or where wide utility or former railroad right-of-way exists, permitting such facilities to be constructed away from the influence of parallel streets. Shared use paths should offer opportunities not provided by the road system. They can provide a recreational opportunity or, in some instances, can serve as direct commute routes if cross flow by motor vehicles and pedestrians is minimized.

- **Paved Shoulders** – The paved portion of the roadway to the right of the edge stripe that extends the service life of the roadway by reducing edge deterioration, and provides a space for temporary storage of disable vehicles.

**DESIGN CRITERIA**

- **Shared Roadway (Lanes)** - Shared motor vehicle/bicycle use of a "standard" width travel lane. See GS Standards in Appendix A.

- **Wide Curb/Outside Lanes** - An outside travel lane with a width of at least 14 feet, but not greater than 15 feet. See “DESIGN GUIDELINES” for design standards discussed later in the section.

- **Bike Lane** - A portion of the roadway designated by striping, signing, and/or pavement markings for preferential or exclusive use by bicycles. On urban projects the bike lane width is the distance from the face of the curb or front edge of gutter pan to the bike lane stripe. Therefore, the bike lane stripe will be 4 feet minimum from the front edge of the gutter pan and 5 feet minimum from the face of curb without gutter pan. Bike lanes have horizontal separation (i.e. pavement markings, such as 4” or 6” solid white lines) but do not have vertical separation

* Rev. 1/20
between the bike lane and the vehicle travel lane and/or parking lane. See Figures A(1)-1, A(1)-2, A(1)-3 and A(1)-5. See “DESIGN GUIDELINES” for design standards discussed later in this section.

Buffered Bike Lane – Bike lanes with horizontal separation (i.e. additional pavement markings, such as a painted buffer), but without vertical separation between the bike lane and vehicle lane and/or parking lane. See FHWA Separated Bike Lane Planning and Design Guide and NACTO Urban Bikeway Design Guide for design criteria for one-way and two-way facilities.

Separated Bike Lane - A facility (also sometimes called “cycle track” or “protected bike lanes”) are located within or directly adjacent to the roadway that has both horizontal separation (i.e. additional pavement markings, such as a painted buffer) and vertical separation (i.e. flexible delineators, curb median, on-street parking, landscaping) between the bike lane and vehicle travel lane and/or parking lane. Practitioners have flexibility in choosing specific design elements. Separated bike lanes can operate as one-way or two-way facilities; their designs can integrate with turning automobile traffic at intersections or can be more fully separated; they can be designed at roadway grade, at sidewalk grade or at an intermediate grade... See FHWA Separated Bike Lane Planning and Design Guide and NACTO Urban Bikeway Design Guide for design criteria for one-way and two-way facilities.

Shared Use Path - Shared use paths are facilities physically separated from motorized vehicular traffic by an open space (buffer) or barrier and either within the highway right of way or within an independent right of way. Users are non-motorized and may include bicyclists, inline skaters, roller skaters, wheelchair users (both non-motorized and motorized) and pedestrians including walkers, runners, and people with baby strollers and people walking dogs. Shared use paths are most commonly designed for two-way travel, and the following guidance assumes a two-way facility is planned unless otherwise stated. When paths are planned, it is desirable to provide paths on both sides of the roadway to decrease the likelihood of children crossing the road. See “VDOT/AASHTO DESIGN GUIDELINES” for design standards discussed later in the section. See Figures A(1)-6 and A(1)-7. Care should be taken not to use shared use path and trail interchangeably because they have distinctly different design guidelines. Pavement design for shared use paths are recommended by the Materials Division.

Paved Shoulder - A minimum 4 feet paved portion of the roadway to the right of the edge stripe on which bicyclists may ride. Note: However delineating (signing or marking) bike lanes within the limits of a required shoulder area is not permitted. See “DESIGN GUIDELINES” for design standards discussed later in the section.

* Rev 10/20
TABLES A(1)-1 and A(1)-2 below indicate the appropriate facility types that are safe, comfortable and equitable for user “of all ages and abilities”. The facility types are based on the roadway typical section (curb and gutter with and without parking, and shoulder and ditch), motor vehicle traffic volume (ADT) and design speed or posted speed of the roadway. A combination of facility types may be appropriate based on the users and/or Locality’s Transportation Plan. The design treatments are considered "minimum criteria". Controlled-access freeways are considered a special case and are not addressed in these tables.

Roadway improvements such as bicycle facilities depend on the roadway's design. Bicycle facilities located on independent alignment depend on many factors, including the performance capabilities of bicyclist and other users. The following tables also include specific recommendations for shared use path and separate bike lane facilities. See “DESIGN GUIDELINES” for design standards for Shared-Use Paths and “DESIGN GUIDELINES” for design standards for Separated Bike Lanes discussed later in this section.

* Rev 10/20
### Design Speed or Posted Speed

<table>
<thead>
<tr>
<th>Design Speed or Posted Speed</th>
<th>AVERAGE DAILY TRAFFIC (ADT) VOLUME</th>
<th>WITHOUT PARKING</th>
<th>WITH PARKING (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 3,000</td>
<td>3,000 to 6,000</td>
<td>Over 6,000</td>
</tr>
<tr>
<td>25 mph (1)</td>
<td>wc 14</td>
<td>wc 15 or bl 4</td>
<td>bl 5</td>
</tr>
<tr>
<td>30-35 mph (1)</td>
<td>bl 4</td>
<td>bl 5</td>
<td>bbl or bl 6</td>
</tr>
<tr>
<td>40-45 mph</td>
<td>sup or sbl</td>
<td>sup or sbl</td>
<td>sup or sbl</td>
</tr>
<tr>
<td>Greater than 45 mph</td>
<td>sup</td>
<td>sup</td>
<td>sup</td>
</tr>
</tbody>
</table>

**TABLE A(1)-1 BICYCLE FACILITY DESIGN FOR CURB AND GUTTER**
(widths are in feet)


Key: wc = wide curb lane; bl = bike lane; sbl = separated bike lane; sup = shared use path, bbl = Buffered Bike Lane

(See DESIGN GUIDELINES in this Appendix for sbl and sup widths)

**Without Parking**

wc and bl widths represent “usable widths” measured from lane stripe to front edge of the gutter pan, not to the face of curb. If no gutter pan is provided, add 1 foot minimum for shy distance from the face of curb. For VDOT projects, the bike lane stripe will be 4 feet minimum from the front edge of the gutter pan. The bike lane stripe will be 5 feet minimum from the face of curb.

**With Parking**

wc widths represent “usable widths” measured from the left edge of the parking space (7 to 8 ft. minimum from the face of curb) to the left stripe of the travel lane. The bl width represents the minimum width measured from the left edge of the parking space (7 to 8 ft. minimum from the face of curb) to the right stripe of the travel lane.

**Notes:**

1. Shared Lane Markings (Sharrows) are recommended for use on wide curb lanes when the posted speed is less than or equal to 35 mph. Shared Lane Markings shall not be used in designated bike lanes.

---

* Rev. 1/20
2. When design year ADT exceeds 2000 VPD, with >5% total Truck and Bus usage and the roadway is designated as an AASHTO Approved U.S. Bike Route (1, 76 and 176) or the roadway is designated as a Bicycle Route on a Locality’s Transportation Plan, a minimum 5 feet bike lane shall be provided.

3. On-Street Parking is only allowed on roadways functionally classified as collectors or locals where the posted speed is 35 mph or less.

<table>
<thead>
<tr>
<th>Design Speed or Posted Speed</th>
<th>AVERAGE DAILY TRAFFIC (ADT) VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 3,000 (1)</td>
</tr>
<tr>
<td>25 mph</td>
<td>sh 4</td>
</tr>
<tr>
<td>30-35 mph</td>
<td>sh 4</td>
</tr>
<tr>
<td>40-45 mph</td>
<td>sh 6</td>
</tr>
<tr>
<td>Greater than 45 mph</td>
<td>sup or sh 6</td>
</tr>
</tbody>
</table>

**TABLE A(1)-2 BICYCLE ACCOMODATION / FACILITY DESIGN FOR SHOULDER AND DITCH TYPICAL SECTION**

(widths are in feet)


Key: sh = paved shoulder; sup = shared use path

(See **DESIGN GUIDELINES** in this Appendix for sup widths)

**Notes:**

1. Delineating (signing or marking) bike lanes within the limits of the required paved shoulder area is not permitted. In order to delineate the bike lane, the bike lane shall be provided in addition to the required paved shoulder area.

2. Shared Lane Markings (Sharrows) shall not be used on shoulders.

3. When design year ADT exceeds 2000 VPD, with >5% total Truck and Bus usage and the roadway is designated as an AASHTO Approved U.S. Bike Route (1, 76 and 176) or the roadway is designated as a Bicycle Route on a Locality’s Transportation Plan, a minimum 5 feet paved shoulder shall be provided.

* Rev. 1/20
DESIGN GUIDELINES

The following design guidelines are to be used in the design of bicycle facilities and have been obtained from AASHTO's 2012 "Guide for the Development of Bicycle Facilities" and in combination with VDOT Policy. Only key information from AASHTO's Guide is contained in this VDOT publication. Individuals involved in the planning and design of bicycle facilities should be familiar with and refer to the latest AASHTO Guides, FHWA Guides and NACTO Guides for additional information. AASHTO criteria will be considered as "minimum criteria" by designers.

These design guidelines consider the following types of bicycle facilities: Shared Roadway (Lanes) (No Bikeway Designation using Markings or Signs), Signed Shared Roadway (Designated by Bicycles “May Use Full Lane” Signs), Marked Shared Roadway (Designated by Shared Lane Markings “Sharrows” if the roadway posted speed is equal to or less than 35 mph), Bike Lane (Designated by Markings and Signs), Shared Use Path, Separated Bike Lane (Designated as such by Markings and Signs) and Paved Shoulders (Delineating (marking and signing) a Bike Lane within the limits of the required paved shoulder area is not permitted).

When bicycle facilities are proposed, the roadway conditions will be examined for potential problems specific to bicyclists.

SHARED ROADWAY (LANES)

The most critical variable affecting the ability of a roadway to accommodate bicycle traffic is width. Adequate width may be achieved by providing paved shoulders or wide curb/outside lanes.

- Paved Shoulders

  Paved shoulders should be at least 4 feet wide to accommodate bicycle travel. However, where 4 feet minimum widths cannot be provided, any additional shoulder width is better than none at all. A shoulder width of 5 feet is required from the face of guardrail, curb or other roadside barriers, or if motor vehicle speeds exceed 50 mph, or the percentage of trucks, buses, and recreational vehicles is 5% or greater, or if lateral obstructions exist at the right side of the roadway. It is desirable to increase the width of shoulders where higher bicycle usage is expected. Paved shoulders are not to be designated (signed or marked) as “bike lanes”.

  On rural and urban collector and local roads and streets, with shoulder and ditch typical sections provide minimum 5 feet wide paved shoulders when:
  a) Design Year ADT > 2000 VPD, with ≥ 5% total truck and bus usage and
  b) The route is an AASHTO Approved U.S. Bicycle Route (1, 76 or 176) or designated as a bicycle route on a Locality’s Transportation Plan.

* Rev. 7/18
Note: For the above situations, the remainder of the shoulder will be topsoil and seeded.

AASHTO’s recommendations for shoulder width (as described in *A Policy on Geometric Design of Highways and Streets*) are the best guide for bicycles as well, since wider shoulders are recommended on heavily traveled and high-speed roads and those carrying large numbers of trucks. In order to be usable by bicyclists, the shoulder must be paved.

Rumble strips or raised pavement markers, where installed to discourage or warn motorists they are driving on the shoulder, are not recommended where shoulders are used by bicyclists unless there is a minimum clear path of 1 foot from the rumble strip to the traveled way, 4 feet from the rumble strip to the outside edge of paved shoulder, or 5 feet to adjacent guardrail, curb or other obstacle. If existing conditions preclude achieving the minimum desirable clearance, the width of the rumble strip may be decreased or other appropriate alternative solutions should be considered. VDOT’s policy is to not install pavement markers along the outside edge line of a travelway. For more information, see IIM-LD-212 on (Rumble Strips and Rumble Stripes).

- **Wide Curb/Outside Lanes**

  Wide outside lanes for bicycle use are usually preferred where shoulders are not provided, such as in restrictive urban areas. On highway sections without designated bikeways, an outside or curb lane wider than 12 feet can better accommodate both bicycles and motor vehicles in the same lane and thus is beneficial to both bicyclists and motorists.

  In general 14 feet of usable lane width is the recommended width for shared use in a wide outside lane. Usable width normally would be from edge stripe to lane stripe or from the longitudinal joint of the gutter pan to lane stripe (the gutter pan should not be included as usable width). On stretches of roadway with steep grades where bicyclists need more maneuvering space, the wide outside lane should be slightly wider where practicable (15 feet is preferred). The 15 foot width may also be necessary in areas where drainage grates, raised reflectors on the right-hand side of the road, or on-street parking effectively reduce the usable width. With these exceptions in mind, widths greater than 14 feet that extend continuously along a stretch of roadway may encourage the undesirable operation of two motor vehicles in one lane, especially in urban areas, and therefore are not recommended. In situations where more than 15 feet of pavement width exists, consideration should be given to striping bike lanes or shoulders.

* Rev. 7/18
SIGNED SHARED ROADWAYS

The distinction between shared roadways and signed shared roadways is that signed shared roadways are those that have been identified by signing as preferred bike routes.

BIKE LANES

Bike lanes are incorporated into a roadway design when it is desirable to delineate available road space for use by bicyclists and motorists. Urban settings will typically use a bike lane to accommodate bicyclists (See Figure A(1)-3*). In Rural areas a minimum 4 feet paved shoulder is required to accommodate bicyclists (See Figure A(1)-4*). However delineating (signing or marking), bike lanes within the limits of the required paved shoulder area is not permitted.

Bike lanes should be one-way facilities and carry bike traffic in the same direction as adjacent motor vehicle traffic.  A two-way bike lane on one side of the roadway is not permitted unless it is a separated bike lane. See FHWA Separated Bike Lane Planning and Design Guides. In general, on one-way streets, a bike lane should be placed only on the right side of the street unless the street is designated as a Bike Boulevard. See NACTO Urban Bikeway Design Guide.

Where on-street parking is permitted as shown in Figures A(1)-1* and A(1)-2*, the bike lane shall be placed between the parking area and the travel lane and have a minimum width of 5 feet. Bike lanes should never be placed between the parking lane and curb line, unless it is a separated bike lane. See FHWA “Separated Bike Lane Planning and Design Guide”
- **On-Street Parking with Parking Stripe or Stalls See Figure A(1)-1**.

When there is on-street parking on urban roadways, the bicycle riding location is in the area between parked cars and moving motor vehicles. 12 feet of combined bicycle travel and parking width should be the minimum considered for this type of shared use. Striping should be provided to delineate the parking stalls.

![FIGURE A(1)-1 BIKE LANES WITH ON-STREET PARKING](image)

The optional solid white stripe may be advisable where stalls are unnecessary (because parking is light) but there is concern that motorists may misconstrue the bike lane to be a traffic lane.

7' for Residential Street and 8' Commercial and mix use.

- **On-Street Parking Without Parking Stripe or Stalls. See Figure A(1)-2**.

![FIGURE A(1)-2 BIKE LANES WITHOUT ON-STREET PARKING STRIPE OR STALL](image)

13 feet is recommended where there is substantial parking or turnover of parked cars is high (e.g. commercial areas).

7 feet for Residential Streets and 8 feet for Commercial and mix use Streets.

* Rev. 10/20
Delineating (signing or marking) bike lanes within the limits of the required paved shoulder area is not permitted.

4 feet minimum paved shoulder is required to accommodate bicyclists.

5 feet minimum paved shoulder is required from the face of guardrail or other roadside barriers.

- **Bike Lane Widths**

The width of a bike lane is 5 feet minimum from the face of a curb to the bike lane stripe on roadways without a gutter pan. The width of a bike lane is 4 feet minimum from the edge of pavement (face of gutter pan) to the bike lane stripe on curb and gutter roadways. Greater bike lane widths (5 feet Minimum) are required where substantial truck traffic is present, Transit Buses are present, or where posted speeds exceed 40 mph. Where motor vehicle traffic volume is high or substantial truck, bus or recreational vehicle traffic is present or speeds warrant, 6 feet minimum is appropriate to the bike lane stripe from the face of curb.

Figure A(1)-3* depicts a bike lane along the outer portion of an urban curbed street where parking is prohibited.
Drainage inlets and utility covers that extend into the bike lane cause bicyclists to swerve, and reduce the usable width of the lane. Therefore, where these structures exist, the bike lane width may need to be increased accordingly. Drainage grates shall be placed perpendicular to the direction of travel and the gaps between the openings and its frame shall not be greater than 1 inch. Grates shall be within 0.25 inch of the road surface. If grates have elongated openings, they shall be placed so that the long dimension of the opening is perpendicular to the dominant direction of travel.
• Bike Lanes and Turning Lanes

Bike lanes complicate bicycle and motor vehicle turning movements at intersections. It is preferable to continue the bike lane through the intersection. For example, locations where a bike lane approaches an intersection the bike lane is to be a minimum of 5 feet wide and continue parallel to the left of a right turn lane. See Figure A(1)-5* below.

![Diagram showing bike lane and right turn lane](image)

**FIGURE A(1)-5* RIGHT TURN ONLY LANE**

• Bike Lanes Approaching Right-Turn-Only Lanes

NOTES: For other intersection situations see the AASHTO *Guide for the Development of Bicycle Facilities*. For current typical bicycle lane pavement markings see VDOT *Road and Bridge Standards, Section 1300*.

Delineating (signing or marking) bike lanes within the limits of a required paved shoulder area is not permitted.

4 feet minimum paved shoulder is required to be considered a bicycle accommodation.  

*Figure A(1)-5* presents a treatment for pavement markings where a bike lane approaches a motorist right-turn-only lane. The design of bike lanes should include appropriate signing at intersections to warn of conflicts. The approach shoulder width should be provided through the intersection, where feasible, to accommodate right turning bicyclists or bicyclists who prefer to use crosswalks to negotiate the intersection. The approach paved shoulder width should also continue parallel to the left of the right-turn lane, where feasible, to accommodate bicyclists continuing through the intersection.

* Rev 10/20
• Bicycle Facilities Through Interchange Areas

Turning roadways provided for interchange ramp ingress and egress often require bicyclists to perform merging, weaving or crossing maneuvers with other vehicles. These conflict points are made challenging when a wide disparity in speed exists between traffic on the ramp and bicycle traffic crossing the ramp, and when grade separations create significant profile gradients. If a bike lane or route must traverse an interchange area, these intersection or conflict points should be designed to limit the conflict areas or to eliminate unnecessary uncontrolled ramp connections to urban roadways. For more information, see ITE Recommended Design Guidelines to Accommodate Pedestrians and Bicyclists at Interchanges, which can be purchased from ITE.

BUFFERED BIKE LANES

Bike lanes with horizontal separation (i.e. additional pavement markings, such as a painted buffer), but without vertical separation between the bike lane and vehicle lane and/or parking lane. See FHWA Separated Bike Lane Planning and Design Guide and NACTO Urban Bikeway Design Guide for design criteria for one-way and two-way facilities.

SEPARATED BIKE LANES

A separated bike lane is an exclusive facility for bicyclists that is located within or directly adjacent to the roadway and that is physically separated from motor vehicle traffic with a vertical element. Separated bike lanes are differentiated from standard and buffered bike lanes by the vertical element. They are differentiated from shared use paths (and side paths) by their more proximate relationship to the adjacent roadway and the fact that they are bike-only facilities. Separated bike lanes are also sometimes called "cycle tracks" or "protected bike lanes."

Within the common elements of separated bike lanes - dedicated space for cyclists that is separated from motor vehicle travel and parking lanes - practitioners have flexibility in choosing specific design elements. Separated bike lanes can operate as one-way or two-way facilities; their designs can integrate with turning automobile traffic at intersections or can be more fully separated; they can be designed at roadway grade, at sidewalk grade or at an intermediate grade; and they can be separated from the adjacent roadway or sidewalk with a variety of treatments including but not limited to on-street parking, raised curbs or medians, bollards, landscaping, or planters. For additional information see FHWA "Separated Bike Lane Planning and Design Guide" and NACTO Urban Bikeway Design Guide.

* Rev. 1/20
SHARED USE PATHS

Shared use paths are facilities physically separated from motorized vehicular traffic by an open space (buffer) or barrier and either within the highway right of way or within an independent right of way. Users are non-motorized and may include bicyclists, inline skaters, roller skaters, wheelchair users (both non-motorized and motorized) and pedestrians including walkers, runners, and people with baby strollers and people walking dogs. Shared use paths are most commonly designed for two-way travel, and the following guidance assumes a two-way facility is planned unless otherwise stated. See Figure A(1)-7* for cross section of two-way shared use path. When paths are planned, it is desirable to provide paths on both sides of the roadway to decrease the likelihood of children crossing the road. Pavement design for shared use paths are recommended by the Materials Division.

Care should be taken not to use shared use path and trail interchangeably because they have distinctly different design guidelines.

- Separation Between Shared Use Paths and Roadways

  Shoulder and Ditch Typical Section:

  When two directional shared use paths are located adjacent to a roadway, wide separation between a shared use path and the adjacent highway is desirable to demonstrate to both the bicyclist and the motorist that the path functions as an independent facility for bicyclists and others. On shoulder and ditch typical sections shared use paths should be placed behind the ditch in a manner that will be compatible with the roadway if the roadway is converted to a curb and/or curb and gutter typical section.

  When this is not possible and the distance between the outside edge of the graded shoulder and the shared use path is less than 5 feet, a suitable physical barrier is required. A suitable physical barrier is defined as dense shrubbery, railing or chain link fence. Such barriers serve both to prevent path users from making unwanted movements between the path and the highway shoulder and to reinforce the concept that the path is an independent facility. Where used, the barrier should be a minimum of 42 inches high (including on structures), to prevent bicyclists from toppling over it. A barrier between a shared use path and adjacent highway should not impair sight distance at intersections, and should be designed to not be a hazard to motorists or bicyclist.

* Rev 10/20
Curb and/or Curb and Gutter Typical Sections:

For curb and/or curb and gutter streets, the separation from the face of the curb to the edge of the shared use path shall be a minimum of 8 feet in order to provide the minimum lateral offset distance for signs to both the roadway and the shared use path users in accordance with MUTCD Part 2 and part 9. If signs are required on the outside of the shared use path due to horizontal and vertical grade changes then a minimum of 6.5' of right of way from the edge of the path shall be provided. If signs are not required, a minimum 3' of right of way shall be provided. See Figure A(1)-6*

![Typical section with roadway sign and shared use path sign.](image)

**Notes:**
- For roadway signs 30" in width or less, use 7' minimum mounting height.
- For roadway signs greater than 30", use 8' minimum mounting height.

**FIGURE A(1)-6** TYPICAL SECTION OF SHARED USE PATH WITH ROADWAY SIGNS AND SHARED USE PATH SIGNS

* Rev 10/20
Separation between Shared Use Path and Equestrian Trail

Horses can be startled easily and may act unpredictably if they perceive approaching bicyclists as a danger. Measures to mitigate bicyclist-equestrian conflicts include provision of separate bridle paths, maintenance of adequate sight lines so that bicycles and equestrians are able to see each other well in advance, and signing that clarifies appropriate passing techniques and yielding responsibilities. Along paths with high to moderate use, the separate paved and unpaved treads should be divided by at least a 6 ft. wide vegetation buffer or barrier.


---

* Rev. 1/15
Two-Directional Shared Use Path

The paved width and the operating width required for a shared use path are primary design considerations. The minimum paved width for a two-directional shared use path is 10 feet. A minimum 2 foot wide graded area with a maximum 6:1 slope, shall be maintained adjacent to both sides of the path. A minimum 3 foot clearance shall be maintained from the edge of the path to signs, trees, poles, walls, fences, railing, guardrail, or other lateral obstructions. See Figure A(1)-7.

Under certain conditions it may be necessary to increase the width of a shared use path to 11 feet, or even 14 feet, due to substantial use by bicycles, joggers, skaters and pedestrians, use by large maintenance vehicles, and steep grades. However, in rare instances, a reduced width of 8 feet may be used. This reduced width may be used only where the following conditions prevail:

1. Bicycle traffic is expected to be low, even on peak days or during peak hours.
2. Pedestrian use of the facility is not expected to be more than occasional.
3. There will be good horizontal and vertical alignment providing safe and frequent passing opportunities, and
4. During normal maintenance activities the path will not be subjected to maintenance vehicle loading conditions that would cause pavement edge damage.

In addition, a path width of 8 ft. may be used for a short distance due to a physical constraint such as an environmental feature, bridge abutment, utility structure, fence and such. Warning signs that indicate the path narrows (W5-4a), per the MUTCD shall be posted in each direction at this location(s). When a path is less than 10 ft. wide a Design Waiver is required.

![Cross Section of Two-Way Shared Use Path](image)

**FIGURE A(1)-7** CROSS SECTION OF TWO-WAY SHARED USE PATH
One-Directional Shared Use Path

The minimum width of a one-directional shared use path is 6 feet. A one-way path would rarely be designed and only in a special situation. It should be recognized that one-way paths often would be used as two-way facilities unless effective measures are taken to assure one-way operation. Without such enforcement, it should be assumed that shared use paths would be used as two-way facilities by both pedestrians and bicyclists and designed accordingly. A minimum 2 foot wide graded area with a maximum 6:1 slope, shall be maintained adjacent to both sides of the path. A minimum 3 foot clearance shall be maintained from the edge of the path to signs, trees, poles, walls, fences, railing, guardrail, or other lateral obstructions. See Figure A(1)-7.

Physical Barrier Applies to Both One-Directional & Two-Directional Shared Use Paths

Where the path is adjacent to parallel water hazard, other obvious hazard or downward slope of 3:1 or steeper, a minimum 5 foot wide separation from the edge of the path pavement to the top of slope is required. When the separation from the edge of the shared use path to the top of the slope is less than 5 feet, a physical barrier such as railing (HR-1, Type III) or chain link fence is required in the following situations:

- Slopes 2:1 or steeper, with a drop of 4 feet or greater
- Slopes 3:1 or steeper, with a drop of 6 feet or greater
- Slopes 3:1 or steeper, adjacent to a parallel water hazard (greater than 2 feet deep) or other obvious hazard

*Note: When a shared use path is constructed adjacent to a retaining wall or a structure with a drop-off of 1 foot or more, a railing 42 inches minimum is required. When a roadway barrier system is required, see Appendix J.

Note: When a physical barrier such as railing (HR-1, Type III) or chain link fence (FE-CL) is required, contact the Location and Design Standards and Special Design Section for details. Also see VDOT Road and Bridge Standards.

The physical barrier, railing (HR-1 Type III) or chain link fence (FE-CL) shall begin prior to, and extend beyond the area of need. The lateral offset of the physical barrier shall be 3 feet from the edge of the shared use path. The ends of the physical barrier shall be flared away from the edge of the shared use path.

When railing or fence is used to discourage shared use path users from venturing off the path or onto adjacent property the design can include two or four horizontal members with vertical members spaced frequently enough to provide the needed structural support and in accordance with applicable building codes. Berms and/or vegetation can also be used to serve this function. The location of the railing or fence in relationship to the shared use path shall be the same as the location of physical barrier mentioned above.

See Figure A(1)-8 PHYSICAL BARRIER FOR SHARED-USE PATH

* Added 6/22
FIGURE A(1)-8* PHYSICAL BARRIER FOR SHARED USE PATH

* Rev 10/20
• Vertical Clearance

The vertical clearance from the shared use path to the bottom of any sign or overhanging vegetation (Trees) shall be a minimum of 8 feet in accordance with the MUTCD, Part 9 and AASHTO’s Guide for the Development of Bicycle Facilities, 2012 respectively. However, vertical clearance may need to be greater to permit passage of maintenance and emergency vehicles. For underpasses, tunnels and bridges a minimum vertical clearance of 10 feet is desirable.

• Design Speed

Shared use paths should be designed for a selected speed that is at least as high as the preferred speed of the faster bicyclists. Design speeds range from 12 mph to 30 mph, as shown in Table A(1)-3. However, in general a minimum design speed 18 mph should be used. When a downgrade of 6% or greater exist, or where strong prevailing tailwinds exist, a maximum design speed of 30 mph shall be used.

• Horizontal Alignment

Most shared use paths built in the United States must also meet the requirements of the Americans with Disabilities Act. ADA guidelines require that cross slopes not exceed 2% to avoid the severe difficulties that greater cross slopes can create for people using wheelchairs. Thus, for shared use paths, the maximum superelevation rate will be 2%. When transitioning a 2% superelevation, a minimum 25 foot transition distance should be provided between the end and beginning of consecutive and Reversing horizontal curves.

The coefficient of friction depends upon speed; surface type, roughness, and condition; tire type and condition; and whether the surface is wet or dry. Extrapolating from values used in highway design, design friction factors for paved shared use paths can be assumed to vary from 0.34 at 6 mph to 0.21 at 30 mph.

* Rev. 7/18
Based upon various design speeds of 18 to 30 mph and a maximum lean angle of 20°, minimum radii of curvature for Paved Shared Use Paths can be selected from **TABLE A(1)-3**:

<table>
<thead>
<tr>
<th>Design Speed (V) (mph)</th>
<th>Minimum Radius (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
</tr>
<tr>
<td>30</td>
<td>166</td>
</tr>
</tbody>
</table>

**TABLE A(1)-3** MINIMUM RADIi FOR PAVED SHARED USE PATHS BASED ON 20° LEAN ANGLE


- Grade
  
  Grades on shared use paths should be kept to a minimum, especially on long inclines. Grades greater than 5 percent are undesirable because the ascents are difficult for many bicyclists and wheelchair users to climb and the descents cause some bicyclists and wheelchair users to exceed the speeds at which they are competent or comfortable. The maximum grade of a shared use path adjacent to a roadway should be 5 percent, but the grade shall generally match the grade of the adjacent roadway. Where a shared use path runs adjacent to the roadway, grades may exceed 5 percent but shall be less than or equal to the roadway grade.

  Grades on shared use paths in independent rights of way shall be limited to 5 percent maximum.

  Grades steeper than 3 percent are not practical for shared use paths with crushed stone or other unpaved surfaces for both bicycle handling and drainage erosion reasons.

  In addition, because shared use paths are used by pedestrians, the allowable grades are subject to the accessibility guidelines described in the **U.S. Access Board Supplemental Notice of Public Rule Making (SNPRM)** on Shared Use Paths.

  When certain conditions such as physical constraints (existing terrain or infrastructure, notable natural features, etc.) or regulatory constraints (endangered species, the environment, etc.) may prevent full compliance with the 5 percent maximum grade refer to R302.5.4 and 302.5.5 below.

  R302.5 Grade. The grade of pedestrian access routes shall comply with R302.5.
R302.5.1 Within Street or Highway Right-of-Way. Except as provided in R302.5.3, where pedestrian access routes are contained within a street or highway right-of-way, the grade of pedestrian access routes shall not exceed the general grade established for the adjacent street or highway.

R302.5.2 Not Within Street or Highway Right-of-Way. Where pedestrian access routes are not contained within a street or highway right-of-way, the grade of pedestrian access routes shall be 5 percent maximum.

R302.5.3 Within Pedestrian Street Crossings. Where pedestrian access routes are contained within a pedestrian street crossing, the grade of pedestrian access routes shall be 5 percent maximum.

R302.5.4 Physical Constraints. Where compliance with R302.5.1 or R302.5.2 is not practicable due to existing terrain or infrastructure, right-of-way availability, a notable natural feature, or similar existing physical constraints, compliance is required to the extent practicable.

R302.5.5 Regulatory Constraints. Where compliance with 302.5.1 or 302.5.2 is precluded by federal, state, or local laws the purpose of which is to preserve threatened or endangered species; the environment; or archaeological, cultural, historical, or significant natural features, compliance is required to the extent practicable.

Options to mitigate excessive grades, greater than 5 percent on shared use paths due to physical and/or environmental constraints include the following:

- Use higher design speeds for horizontal and vertical curvature, stopping sight distance and other geometric features.
- When using longer grades, consider an additional 4 to 6 feet of width to permit slower bicyclists to dismount and walk uphill, and to provide more maneuvering space for fast downhill bicyclists.
- For long downgrades, and/or downgrades not readily apparent to approaching cyclists
  - Install hill warning signs for bicyclists (W7-5) and advisory speed plaque, if appropriate, per the MUTCD.
  - Provide signage that alerts path users to the maximum percent of grade as shown in the MUTCD.
- Exceed minimum horizontal clearances, recovery area, and/or install protective railing.
- If other designs are not practicable, use a series of short switchbacks to traverse the grade. If this is done, an extra 4 to 6 feet of path width is recommended to provide maneuvering space.
- Provide resting intervals with flatter grades to permit users to stop periodically and rest.

* Rev. 1/18
Sight Distance

The following charts indicate the minimum stopping sight distance for various design speeds and grades based on a total perception and brake reaction time of 2.5 seconds and a coefficient of friction of 0.16 to account for the poor wet weather braking characteristics of many bicycles. For two-way shared use paths, the sight distance in the descending direction, that is, where “G” is negative, will control the design.

<table>
<thead>
<tr>
<th>Sight Distance Descending Grade (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
</tr>
<tr>
<td>12 mph</td>
</tr>
<tr>
<td>14 mph</td>
</tr>
<tr>
<td>16 mph</td>
</tr>
<tr>
<td>18 mph</td>
</tr>
<tr>
<td>20 mph</td>
</tr>
<tr>
<td>25 mph</td>
</tr>
<tr>
<td>30 mph</td>
</tr>
</tbody>
</table>

TABLE A(1)-4 MINIMUM STOPPING SIGHT DISTANCE - DESCENDING GRADE
<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>74</td>
<td>72</td>
<td>70</td>
<td>69</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>14</td>
<td>92</td>
<td>90</td>
<td>88</td>
<td>86</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>16</td>
<td>121</td>
<td>109</td>
<td>106</td>
<td>104</td>
<td>101</td>
<td>99</td>
</tr>
<tr>
<td>18</td>
<td>133</td>
<td>130</td>
<td>126</td>
<td>123</td>
<td>120</td>
<td>117</td>
</tr>
<tr>
<td>20</td>
<td>157</td>
<td>152</td>
<td>147</td>
<td>144</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>25</td>
<td>212</td>
<td>214</td>
<td>207</td>
<td>201</td>
<td>196</td>
<td>191</td>
</tr>
<tr>
<td>30</td>
<td>298</td>
<td>287</td>
<td>277</td>
<td>268</td>
<td>260</td>
<td>253</td>
</tr>
</tbody>
</table>

**TABLE A(1)-5** MINIMUM STOPPING SIGHT DISTANCE - ASCENDING GRADE

\[ S = \frac{V^2}{30 (f + G)} + 3.67 V \]

Where:
- \( S \) = stopping sight distance (feet)
- \( V \) = velocity (mph)
- \( F \) = coefficient of friction (use 0.16)
- \( G \) = grade (ft/ft) (rise/run)

Table A(1)-6* indicates the minimum length of vertical curve necessary to provide minimum stopping sight distance at various speeds on crest vertical curves. The eye height of the bicyclist is assumed to be 4.5 feet and the object height is assumed to be 0 inches to recognize that impediments to bicycle travel exist at pavement level.

<table>
<thead>
<tr>
<th>A (%)</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
<th>280</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>30</td>
<td>70</td>
<td>110</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>180</td>
<td>220</td>
<td>260</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>55</td>
<td>95</td>
<td>135</td>
<td>175</td>
<td>215</td>
<td>256</td>
<td>300</td>
<td>348</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>180</td>
<td>222</td>
<td>269</td>
<td>320</td>
<td>376</td>
<td>436</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>50</td>
<td>90</td>
<td>130</td>
<td>171</td>
<td>216</td>
<td>267</td>
<td>323</td>
<td>384</td>
<td>451</td>
<td>523</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>71</td>
<td>111</td>
<td>152</td>
<td>199</td>
<td>252</td>
<td>311</td>
<td>376</td>
<td>448</td>
<td>526</td>
<td>610</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>48</td>
<td>88</td>
<td>128</td>
<td>174</td>
<td>228</td>
<td>288</td>
<td>356</td>
<td>430</td>
<td>512</td>
<td>601</td>
<td>697</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>60</td>
<td>100</td>
<td>144</td>
<td>196</td>
<td>256</td>
<td>324</td>
<td>400</td>
<td>484</td>
<td>576</td>
<td>676</td>
<td>784</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>70</td>
<td>111</td>
<td>160</td>
<td>218</td>
<td>284</td>
<td>360</td>
<td>444</td>
<td>538</td>
<td>640</td>
<td>751</td>
<td>871</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>78</td>
<td>122</td>
<td>176</td>
<td>240</td>
<td>313</td>
<td>396</td>
<td>489</td>
<td>592</td>
<td>704</td>
<td>826</td>
<td>958</td>
<td>1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>45</td>
<td>85</td>
<td>133</td>
<td>192</td>
<td>261</td>
<td>341</td>
<td>432</td>
<td>533</td>
<td>645</td>
<td>768</td>
<td>901</td>
<td>1045</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>51</td>
<td>92</td>
<td>144</td>
<td>208</td>
<td>283</td>
<td>370</td>
<td>468</td>
<td>578</td>
<td>699</td>
<td>832</td>
<td>976</td>
<td>1132</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>56</td>
<td>100</td>
<td>156</td>
<td>224</td>
<td>305</td>
<td>398</td>
<td>504</td>
<td>622</td>
<td>753</td>
<td>896</td>
<td>1052</td>
<td>1220</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>60</td>
<td>107</td>
<td>167</td>
<td>240</td>
<td>327</td>
<td>427</td>
<td>540</td>
<td>667</td>
<td>807</td>
<td>960</td>
<td>1127</td>
<td>1307</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>64</td>
<td>114</td>
<td>178</td>
<td>256</td>
<td>348</td>
<td>455</td>
<td>576</td>
<td>711</td>
<td>860</td>
<td>1024</td>
<td>1202</td>
<td>1394</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>68</td>
<td>121</td>
<td>189</td>
<td>272</td>
<td>370</td>
<td>484</td>
<td>612</td>
<td>756</td>
<td>914</td>
<td>1088</td>
<td>1277</td>
<td>1481</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>72</td>
<td>128</td>
<td>200</td>
<td>288</td>
<td>392</td>
<td>512</td>
<td>648</td>
<td>800</td>
<td>968</td>
<td>1152</td>
<td>1352</td>
<td>1568</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>33</td>
<td>76</td>
<td>135</td>
<td>211</td>
<td>304</td>
<td>414</td>
<td>540</td>
<td>684</td>
<td>844</td>
<td>1022</td>
<td>1216</td>
<td>1427</td>
<td>1655</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>80</td>
<td>142</td>
<td>222</td>
<td>320</td>
<td>436</td>
<td>569</td>
<td>720</td>
<td>889</td>
<td>1076</td>
<td>1280</td>
<td>1502</td>
<td>1742</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>37</td>
<td>84</td>
<td>149</td>
<td>233</td>
<td>336</td>
<td>457</td>
<td>597</td>
<td>756</td>
<td>933</td>
<td>1129</td>
<td>1344</td>
<td>1577</td>
<td>1829</td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>39</td>
<td>88</td>
<td>156</td>
<td>244</td>
<td>352</td>
<td>479</td>
<td>626</td>
<td>792</td>
<td>978</td>
<td>1183</td>
<td>1408</td>
<td>1652</td>
<td>1916</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>41</td>
<td>92</td>
<td>164</td>
<td>256</td>
<td>368</td>
<td>501</td>
<td>654</td>
<td>828</td>
<td>1022</td>
<td>1237</td>
<td>1472</td>
<td>1728</td>
<td>2004</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>43</td>
<td>96</td>
<td>171</td>
<td>267</td>
<td>384</td>
<td>523</td>
<td>683</td>
<td>864</td>
<td>1067</td>
<td>1291</td>
<td>1536</td>
<td>1803</td>
<td>2091</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>44</td>
<td>100</td>
<td>178</td>
<td>278</td>
<td>400</td>
<td>544</td>
<td>711</td>
<td>900</td>
<td>1111</td>
<td>1344</td>
<td>1600</td>
<td>1878</td>
<td>2178</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE A(1)-6* MINIMUM LENGTH OF CREST VERTICAL CURVE (L) BASED ON STOPPING SIGHT DISTANCE


- **Heavy line represents S = L**
- **L** = Minimum Length of Vertical Curve (feet)
- **A** = Algebraic Grade Difference (%)
- **S** = Stopping Sight Distance (feet)

when \( S > L \):

\[
L = \frac{2S - 900}{A}
\]

when \( S < L \):

\[
L = \frac{AS^2}{900}
\]

Height of cyclist eye – 4.5 feet

Height of object – 0 feet

---

* Rev 10/20
Figure A(1)-9* and Table A(1)-7* indicate the minimum clearance that should be used to line of sight obstructions for horizontal curves. The lateral clearance is obtained from the stopping sight distance and the proposed horizontal radius of curvature. The stopping sight distance is obtained from Table A(1)-5 and Table A(1)-6*.

![Diagram of minimum lateral clearance for horizontal curves]

**TABLE A(1)-7* MINIMUM LATERAL CLEARANCE FOR HORIZONTAL CURVES**

Source: AASHTO – *Guide for the Development of Bicycle Facilities*

---

* Rev 10/20
Bicyclists frequently ride side-by-side on shared use paths, and on narrow paths bicyclists have a tendency to ride near the middle of the path. For these reasons, and because of the higher potential for bicycle crashes, lateral clearances on horizontal curves should be calculated based on the sum of the stopping sight distances for bicyclists traveling in opposite directions around the curve. Where this is not possible or feasible, consideration should be given to widening the path through the curve, installing a yellow center line stripe, installing a “Curve Ahead” warning sign in accordance with the MUTCD, or some combination of these alternatives.

- Shared Use Path and Roadway or Entrance Intersections

Intersections between shared use paths and roadways are often the most critical issue in shared use path design. Due to the potential conflicts at these junctions, careful design is of paramount importance to the safety of path users and motorists. Each intersection is unique, and will require sound engineering judgment on the part of the designer as to the appropriate solution. Shared use paths should cross roadways as close to an intersecting road as practical, however, in no case shall the crossing be closer than 5 feet from the edge of the parallel roadway. As the shared use path approaches the crossing it should be aligned with the destination of the crossing on the other side of the road. The path crossing should also be perpendicular (or nearly so) to the roadway or entrance being crossed. Sight distance should be evaluated and sound engineering judgment must be used in locating the shared use path crossings. There may be situations, such as low traffic volumes where the shared use path crossing should be located further from the intersection.

When a shared use path intersects a roadway or entrance on a shoulder and ditch typical section, the shared use path should slope to a relatively level (1%+ slope) area to the roadway or entrance elevation. The level area shall have a Detectable Warning Surface extending the full width of the shared use path and shall be labeled on the plans as Detectable Warning Surface Required. See Figure A(1)-10* for a Shoulder and Ditch Typical Section.

When a shared use path intersects a roadway or entrance on a curb and gutter or curb only typical section a St’d CG-12 Type B shall be called out where the shared use path intersects the roadway or entrance. See Figure A(1)-11* for a Curb and Gutter or Curb Typical Section.

* Rev 10/20
FIGURE A(1)-10* DETECTABLE WARNING SURFACE FOR SHARED USE PATH WITH SHOULDERS

Not To Scale
Shoulder Typical

FIGURE A(1)-11* ST'D. CG-12 TYPE B FOR SHARED USE PATH WITH CURB & GUTTER

Curb & Gutter Typical
(St'd. CG-12, Type B with Buffer Strip)
Not To Scale

* Rev. 10/20
If a sidewalk intersects a shared use path, then the sidewalk shall also slope to the same relatively level area in order to tie in to the shared use path.

Where a shared use path crosses an unpaved roadway or entrance, the unpaved roadway or entrance shall be paved a minimum of 20 feet on each side of the shared-use path to reduce the amount of gravel scattered onto or along the shared use path by motor vehicles. The pavement structure of the shared use path at the crossing shall be adequate to support the expected vehicle loading at that location. At a minimum, the pavement structure at the crossing shall be the same as the shared use path pavement structure.

- **Signing and Marking**
  Adequate signing and marking are essential on shared use paths, especially to alert bicyclists to potential conflicts and to convey regulatory messages to both bicyclists and motorists at highway intersections. In addition, guide signing, such as to indicate directions, destinations, distances, route numbers and names of crossing streets, should be used in the same manner as they are used on highways. In general, uniform application of traffic control devices, as described in the [MUTCD](https://www.fmcsa.dot.gov/about/mutcd), provides minimum traffic control measures which should be applied.

- **Pavement Structure**
  Hard, all weather pavement surfaces (such as asphalt or concrete) are preferred over those of crushed aggregate, sand, clay, or stabilized earth since these materials provide a much lower level of service and require higher maintenance.

  The pavement structure shown in Figure A(1)-12*, shall be used and shown on the pavement typical section sheet of the plans unless otherwise directed by the District Materials Engineer. Any additional information, such as changes in pavement depths, treatment of unsuitable materials, etc. shall be provided by the District Materials Engineer. Compaction of the asphalt concrete shall be completed by a minimum of 5 passes of an 8 ton smooth drum roller (no vibration). Asphalt density shall not be measured in accordance with the [Roads and Bridge Specifications](https://www.fhwa.dot.gov/). This pavement structure typical section can be found in the CADD cell library under the name: Shared-Use Path Pavement Structure.

---

* Rev 10/20
FIGURE A(1)-12* SHARED USE PATH PAVEMENT STRUCTURE

Note: For dimensions, slopes and offsets, see Appendix A (1), Figure A(1)-1-5

INSET A

1. 2" ASPHALT CONCRETE
   SM-9.5A/SM-9.5AL @ approximately 220 lbs./Sq.Yds.

2. 6" AGGREGATE BASE MATERIAL
   TYPE I, OR II, NO. 21A OR 21B

3. REGULAR FILL MATERIAL
   OR NATIVE SOIL

SEE INSET A

---

* Rev. 10/20
• Pavement Cross Slope for Drainage

The minimum recommended pavement cross slope for shared use paths is 1 percent to provide adequate drainage. However, the cross shall not exceed 2 percent in accordance with PROWAG. Sloping in one direction instead of crowning is preferred and usually simplifies the drainage and surface construction. A smooth surface is essential to prevent water ponding and ice formation. On unpaved shared use paths, particular attention should be paid to drainage to avoid erosion.

• Lighting

Lighting for shared use paths is important and should be considered where night usage is expected, such as paths serving college students or commuters, and at highway intersections. Lighting should also be considered through underpasses or tunnels, and when nighttime security could be an issue.

• Restriction of Motor Vehicle Traffic

Shared use paths may need some form of physical barrier at highway intersections to prevent unauthorized motor vehicles from using the facilities. Provisions can be made for a lockable, removable (or reclining) barrier post to permit entrance by authorized vehicles.

• Railroad Crossings

Railroad-highway grade crossings shall be at 60° to 90° degrees with the 90° degrees being the ideal crossing angle to the rails. The greater the crossing deviates from this ideal crossing angle, the greater is the potential for a bicyclist’s front wheel to be trapped in the flangeway causing loss of steering control. Consideration should be given to the crossing surface materials and to the flangeway depth and width.

• Structures

On new structures, the minimum clear width shall be the same as the approach paved shared use path, plus the minimum 2 foot wide clear areas on both sides of the path. Carrying the clear areas across the structures provides a minimum horizontal shy distance from the railing or barrier and it provides needed maneuvering space to avoid conflicts with pedestrians and other bicyclists who are stopped on the bridge. Railings, fences, or barriers on both sides of a path on a structure shall be a minimum of 54 inches (4.5 feet) high. In situations where the structure crosses a high speed or high volume road and objects are subject to being thrown (dangerously) off the structure, it may be desirable to totally enclose the path with fencing. Totally enclosing a path may also be desirable in other areas such as a waterway crossing.

When structures require a barrier separation between the travelway and the shared-use path see Figure A(1)-13 for transition from roadway onto bridge.

* Rev. 10/20
FIGURE A(1)-13* SHARED USE PATH TRANSITION FROM ROAD TO BRIDGE: DESIGN SPEED >45 MPH

* Rev 10/20
AASHTO APPROVED INTERSTATE BICYCLE ROUTES

VDOT provides signing along the designated AASHTO approved Interstate Bicycle Routes. Figure A(1)-14 shows the corridors for Interstate Bicycle Routes 1 and 76 and the counties the routes pass through. The individual county maps provide detailed location information. County maps are to be checked by the project designer to determine if their project is on a designated Interstate Bicycle Route. All proposed projects involving major construction or redevelopment along designated Interstate Bicycle Routes are to provide the necessary design features to facilitate bicycle travel in accordance with the parameters established in these guidelines. For more information see Bicycling and Walking in Virginia.

* Rev 10/20
FIGURE A(1)-14* INTERSTATE BICYCLE ROUTES

* Rev. 10/20
TRAILS AND TRAILHEADS

For more information see; A Summary of Accessibility Standards for Federal Outdoor Developed Areas - United States Access Board.

Trails

Trails are defined in the Final Guidelines for Outdoor Developed Areas as a pedestrian route developed primarily for outdoor recreational purposes. A pedestrian route developed primarily to connect elements, spaces, or facilities within a site is not a trail.

The term “Trail” means an unimproved or sometimes improved recreational facility intended for recreational use such as hiking, mountain biking or equestrians. Care should be taken not to use Share-use path and Trail interchangeably because they have distinctly different design guidelines. However, when any portion of a Trail can be constructed using Share-use path design criteria it should be and an over-look or passing area 5 feet by 5 feet shall be constructed to allow users to experience the Trail without blocking the Trail for other users.

For guidance on the design of Outdoor Recreation Access Routes, see the Final Guidelines for Outdoor Developed Areas, and the DCR Greenways and Trails Toolbox.

The scoping provisions for trails are contained in the Final Guidelines for Outdoor Developed Areas, Section F247. These provisions require trails to comply with the technical provisions for trails in 1017 when all the following conditions are met:

- The trail is newly constructed or altered so that the original design, function, or purpose of the trail is changed. Routine or periodic maintenance activities that are performed to return an existing trail to the condition to which the trail was originally designed are not alterations.
- The trail is designed for pedestrian use.
- The trail connects to a trailhead or to another trail that complies with the technical provisions in Section 1017.

* Rev. 1/15
The technical provisions for trails in Section 1017 of the Final Guidelines for Outdoor Developed Areas, dated September 26, 2013, address surface in 1017.2; clear tread width in 1017.3; passing spaces in 1017.4; tread obstacles in 1017.5; openings in 1017.6; slopes in 1017.7; resting intervals in 1017.8; protruding objects in 1017.9; and trailhead signs in 1017.10.

The technical provisions are the same as in the NPRM, except as follows:

- Conditional exceptions apply to each technical provision for newly constructed and altered trails. The conditional exceptions are discussed under Conditional Exceptions.
- The exception based on situations where it is impractical to require the entire trail to comply with the technical provisions is revised. The exception is discussed under Exceptions for Trails and Beach Access Routes.
- Where concrete, asphalt, or boards are used, obstacles cannot exceed ½ inch in height and the cross slope and resting interval slope cannot exceed 1:48. These provisions are discussed under Concrete, Asphalt, or Board Surfaces.

The NPRM exceptions for openings are included in 302.3 of the ADA-ABA Accessibility Guidelines.

Where resting intervals are provided adjacent to the trail, a turning space is required.

Provisions are added for gates and barriers constructed to control access to trails.

The scoping provisions for trails also address camping facilities, picnic facilities, viewing areas, and outdoor constructed features provided on trails. These facilities are required to comply with the applicable scoping and technical provisions for each facility, regardless of whether the trail complies with the technical provisions in 1017. Individuals with disabilities use trails that do not comply with the technical provisions of 1017 and, therefore, facilities provided on such trails are required to be accessible. Camping facilities, picnic facilities, viewing areas, and outdoor constructed features provided on trails are connected to a trail, and are not required to be connected to an outdoor recreation access route. See 1019 Conditions for Exceptions.

* Added 7/11
Trailhead

Trailheads are defined in F106.5 as an outdoor space developed to serve as an access point to a trail. The junction of two or more trails, where no other access point is provided to the trails, is not a trailhead.

The scoping provisions for trailheads are contained in F247.3. The provisions require new signs provided at trailheads on newly constructed or altered trails to include information on the length of the trail or trail segment; surface type; typical and minimum tread width; and typical and maximum running slope and cross slope. The U.S. Forest Service currently provides this information on trailhead signs posted on certain trails in national forests.

The scoping provisions require at least 20 percent of each type of outdoor constructed feature provided within a trailhead to be accessible. The scoping provisions also require an outdoor recreation access route to connect accessible parking spaces or other site arrival points to the accessible outdoor constructed features, elements, spaces, and facilities within the trailhead.

Resources:

For guidance on the design of Outdoor Recreation Access Routes, see Section 1017 of the Final Guidelines for Outdoor Developed Areas, dated September 26, 2013, and the DCR Greenways and Trails Toolbox.
RAILS – WITH – TRAILS

"Rails-with-Trails" (RWT) describe any shared-use path or trail adjacent to an active railroad corridor. These trails are located adjacent to active rail lines ranging from a few slow-moving short-haul freight trains weekly, to high-frequency Amtrak trains traveling as fast as 140 mph. Like shared-use paths, RWT’s are used by bicyclists and pedestrians. Many of the characteristics of shared-use paths are also common to RWT’s. These include continuous separation from motor vehicle traffic; frequent access points; increased levels of safety and security; scenic qualities; connectivity to a variety of land uses, etc. RWT’s can bring numerous benefits to communities and railroads alike. Working closely with railroad companies and other stakeholders is critical to a successful RWT. Limiting new and/or eliminating at-grade RWT crossings, separating trails back as far as possible from tracks and providing physical separation through fencing, vertical distance, vegetation and/or drainage ditches can help create a well-designed trail. See Figure A(1)-15 and Table A(1)-8* for minimum separation distance between active rails and paths (RWT).

![FIGURE A(1)-15* SEPARATION BETWEEN ACTIVE RAIL LINES AND PATHS (RWT)](image)

Source: Adapted from the VTrans Pedestrian and Bicycle Facility Planning and Design Manual

* Rev. 10/20
### Recommended Separation between Active Rail Lines and Paths (RWT)

<table>
<thead>
<tr>
<th>Type of Rail Operation</th>
<th>Setting Characteristic</th>
<th>Recommended Minimum Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>High Volume/High Speed</strong></td>
<td>11 trains or more per day</td>
<td>Typical Conditions</td>
</tr>
<tr>
<td></td>
<td>Max speed over 45 mph</td>
<td>25 feet with fence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 feet with a solid barrier</td>
</tr>
<tr>
<td></td>
<td>Constrained Areas (cut/fill, bridges, etc.)</td>
<td>15 feet with fence or other physical barrier</td>
</tr>
<tr>
<td></td>
<td>Vertical Separation of at least 10 feet</td>
<td>20 feet</td>
</tr>
<tr>
<td><strong>Medium Volume/Medium Speed</strong></td>
<td>Fewer than 11 trains per day</td>
<td>Typical Conditions</td>
</tr>
<tr>
<td></td>
<td>Max speed 45 mph</td>
<td>25 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 feet with physical barrier</td>
</tr>
<tr>
<td></td>
<td>Constrained Areas</td>
<td>11 feet with physical barrier</td>
</tr>
<tr>
<td></td>
<td>High Trespassing Areas</td>
<td>11 feet with physical barrier</td>
</tr>
<tr>
<td><strong>Low Volume/Low Speed</strong></td>
<td>Fewer than 11 trains per day</td>
<td>Typical Conditions</td>
</tr>
<tr>
<td></td>
<td>Max speed 45 mph</td>
<td>25 feet desired</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 feet minimum</td>
</tr>
<tr>
<td></td>
<td>Constrained Areas</td>
<td>11 feet with physical barrier</td>
</tr>
</tbody>
</table>

**TABLE A(1)-8** SEPARATION BETWEEN ACTIVE RAIL LINES AND PATH (RWT)

Adapted from FHWA Rails with Trails Lessons Learned
Source: [VTrans Pedestrian and Bicycle Facility Planning and Design Manual](#)

For additional information on [Rails-With-Trails](#);
This page is intentionally left blank
SECTION 2 – PEDESTRIAN ACCESS ROUTES (SIDEWALK OR SIDEWALK SPACE) AND CURB RAMPS

PEDESTRIAN ACCESS ROUTE

Purpose
A Pedestrian Access Route provides a continuous accessible means of passage from one location to another within public right-of-way.

When planning and designing pedestrian access routes, attention needs to be given to the areas generating and receiving pedestrian traffic (generators and receptors). **Logical termini are to be established to provide connections between existing facilities or to create a closed circulating loop for the pedestrian access route.** Connecting to existing pedestrian facilities in private or commercial developments may require additional right of way or temporary construction easements. Ending a pedestrian access route into a parking lot or roadway shoulder, or stub outs in anticipation of future extension, are not acceptable means of terminating a pedestrian access route.

In instances where future development may incorporate pedestrian facilities or a pedestrian network, the space necessary for the facility may be dedicated and graded. Items for the pedestrian facility such as sidewalk or curb ramps, shall not be installed until such time as the facility will connect to generators and receptors with a logical terminus.

Sidewalks and pedestrian facilities shall be labeled on all typical section(s) and plan sheets where applicable. The sidewalk space shall not contain any vertical obstructions such as benches, utilities, signs, signal poles, etc. that would reduce the 5 foot minimum usable clear width.

Applicability

All projects in the public right of way (new construction, reconstruction, and alteration projects) that include new and/or relocated pedestrian access routes shall comply with these design criteria.

- New Construction: Where a pedestrian facility does not currently exist, see definitions.
- Reconstruction: revising or relocating the pedestrian facility, see definitions.
- Alterations: Refer to Alteration Projects That Affect Curb Ramps; the term “alterations” is only applicable to curb ramps, not other features of the pedestrian facility. Allowances for curb ramps in alteration projects are covered later in this section. Isolated locations within construction or reconstruction project limits are not considered alterations and shall be constructed in accordance with the criteria for new construction.

These requirements are set forth by federal regulations (28 CFR Part 35) which requires the pedestrian facility meets accessibility guidelines. Refer to IIM-LD-55 for more information on VDOT’s policy on accessibility guidelines.
Temporary and Permanent Facilities

The design criteria in this section shall apply to temporary detours of existing pedestrian facilities and for permanent pedestrian facilities in the public right-of-way.

Definitions

**Cross Slope** - The slope that is perpendicular to the direction of travel (see running slope).

**Crosswalk** - A marked or unmarked pedestrian street crossing, typically at an intersection, that connects the pedestrian access routes on opposite sides of a roadway.

**Curb Ramp** - A ramp that cuts through or is built up to the curb. Curb ramps can be perpendicular or parallel, or a combination of parallel and perpendicular ramps.

**Detectable Warning** - A standardized surface feature built in or applied to walking surfaces or other elements to warn of hazards on a circulation path. Detectable warning surfaces indicate the boundary between pedestrian and vehicular traffic where there is a flush rather than a curbed connection.

**Element** - An architectural or mechanical component of a building, facility, space, or site.

**Facility** - All or any portion of buildings, structures, improvements, elements, and pedestrian or vehicular routes located in the public right-of-way.

**New Construction** - All newly constructed facilities, demolished or reconstructed portions of existing facilities, and elements added to existing facilities for pedestrian circulation and use located in the public right-of-way shall comply with the requirements contained in Section 2.

- Example 1: New or reconstructed roadways and/or new or reconstructed pedestrian access routes. New pedestrian access routes on existing roadways are considered new construction.

- Example 2: A roadway is widened and the existing sidewalk is relocated as a result of the widening. This is new construction for the pedestrian access route.

**Pedestrian Access Route** - A continuous and unobstructed path of travel provided for pedestrians with disabilities within or coinciding with a pedestrian circulation path.

**Pedestrian Circulation Path** - A prepared exterior or interior surface provided for pedestrian travel in the public right-of-way.

**Pedestrian Facilities** - Walkways such as sidewalks, walking and hiking trails, shared-use paths, pedestrian grade separations, crosswalks, and other improvements provided for the benefit of pedestrian travel. Pedestrian facilities are intended to be accessible routes.

**Pedestrian Street Crossing** - A crosswalk (marked or unmarked), or other identified path intended for pedestrian use in crossing a vehicular way.

**Qualified Historic Building or Facility** - A building or facility that is listed in or eligible for listing in the National Register of Historic Places, or designated as historic under an appropriate State or local law.

**Ramp** - A walking surface that has a running slope steeper than 1:20 (i.e. greater than 5.0% running slope).

**Running Slope** - The slope that is parallel to the direction of travel (see cross slope).
**Reconstruction** – These projects include geometric changes to the existing roadway alignment, widening, adjustments to existing curb alignment, or relocating an existing pedestrian access route. Reconstruction will typically require the necessary grading and acquisition of sufficient right of way to construct pedestrian access routes.

**DESIGN CRITERIA**

**Width**

New Pedestrian Access Routes shall be a minimum of 5 feet wide (excluding the width of curb or buffer strip). However, in unique situations where 5 feet is not feasible, a minimum clear width of 4 feet shall be provided, requiring the submission and approval of a Design Waiver (See IIM-LD-227). **Design Exceptions are not permissible for sidewalks less than 4 feet wide.** For additional information, see IIM-LD-55 (Curb Ramps and Sidewalks) or contact the **Policy and Procedures Section** for assistance.

New Pedestrian Access Routes less than 5 feet in continuous width excluding the width of curb shall provide a pedestrian passing area a minimum of 5 feet x 5 feet at reasonable intervals not to exceed 200 feet. These passing areas can be provided at street intersections and entrances with cross slopes no greater than 48:1 (2.0% max.).

When a sidewalk is constructed adjacent to a continuous linear vertical obstruction such as a retaining wall, building, parapet wall, fencing, or guardrail, the minimum width shall be 6 feet measured from the back of the curb to the face of the vertical obstruction.

Locations where there is **“NO” on-street parking**, and where the sidewalk is placed adjacent to the back of curb, the sidewalk shall be a minimum of 5 feet wide measured from the back of curb. These situations require the submission and approval of a Design Waiver for elimination of the Buffer Strip (See IIM-LD-227 and **Buffer Strip** later in this Section). All lateral obstructions (sign, utility poles landscaping, fire hydrants, street lights, parking meters, signal control boxes, and signal poles, etc.) shall be placed behind the sidewalk so as not to encroach on the pedestrian access route. Therefore, right-of-way shall be acquired behind the sidewalk for placement of all lateral obstructions.

Locations where **on-street parking is permitted**, and where sidewalk is placed adjacent to the curb, the sidewalk width shall be 8 feet wide minimum from the back of curb. This additional width is necessary to allow vehicle doors to open and people to exit from the vehicle without blocking the pedestrian access route.

**Minimum Clearances for the Pedestrian Circulation Path**

**Vertical Clearance**

The minimum vertical clearance for objects that protrude into or overhang a pedestrian circulation path is 80 inches, unless the object is a sign, in which case the minimum vertical clearance to the bottom of the sign is 84 inches (7 feet) (See details under **Buffer Strips** later in this Section.)

**Horizontal Protrusions**

Where the edge of the objects height is between 27 inches and 80 inches, the object shall not protrude more than 4 inches horizontally into pedestrian circulation paths. These objects shall not reduce the clear width of the pedestrian access route below 4 feet, excluding the width of the curb.
Post-Mounted Objects
Objects mounted on posts, at a height that is greater than 27 inches and less than 80 inches above the finished surface, shall not protrude more than 4 inches into a pedestrian circulation path. The 4 inch distance will be measured to the edge of the post or curbing (base) under the post mounted object. Minimum height of base or curbing under the post-mounted object shall be 4 inches.

Where a sign or other obstruction is mounted on or between multiple posts, and the clear distance between the posts is greater than 12 inches, the lowest edge of the sign or obstruction shall be either less than the 27 inch maximum or more than the 80 inch minimum above the finished surface.

Grade
Sidewalk that is included in the roadway typical section or right of way is expected to follow the roadway grade; in this case the sidewalk shall not exceed the adjacent roadway profile grade.

Sidewalk that is not part of the roadway typical section, or is on an independent alignment shall have a maximum grade of 5.0% measured parallel to the direction of travel.

Cross Slope
The cross slope of pedestrian access routes and pedestrian street crossings shall not exceed 2.0% measured perpendicular to the direction of travel except as noted later in this Section in Crosswalks (Pedestrian Street Crossings). The 2.0% maximum cross slope is a plus 2.0% to minus 2.0% as needed to accommodate specific project needs. Designers should design sidewalks with a plus 1.5% to minus 1.5% cross slope to accommodate variations that may result during construction.

When the cross slope of the pedestrian access route needs to transition from plus to minus or to tie to an existing condition the transition shall occur at a maximum rate of 1.0% change in cross slope within a 10 foot segment of sidewalk. Transitions with less than a 1.0% change in cross slope shall occur over a minimum 10 foot length of sidewalk.

The cross slope of the pedestrian access route shall be 2.0% maximum for all entrances, this includes private entrances whether residential or commercial. Note: If Entrance grades require adjustments to meet the 2.0% maximum cross slope, see Road Design Manual, Chapter 2E Temporary Construction Easements.

Note: In accordance with the Code of Virginia § 46.2-826: “Stop before entering public highway or sidewalk from private road, etc.; yielding right-of-way. The driver of a vehicle entering a public highway or sidewalk from a private road, driveway, alley, or building shall stop immediately before entering such highway or sidewalk and yield the right-of-way to vehicles approaching on such public highway and to pedestrians or vehicles approaching on such public sidewalk. The provisions of this section shall not apply at an intersection of public and private roads controlled by a traffic control device. At any such intersection, all movement of traffic into and through the intersection shall be controlled by the traffic control device.” In accordance with Section 3 of the Virginia Driver’s Manual: “When entering a roadway from a private road or driveway, you must stop and yield to all traffic and pedestrians”. While these locations may not have a sign installed they are considered stop/yield controlled.
Surfaces

The pedestrian access route surface shall be firm, stable, and slip resistant and shall be generally in a continuous plane with a minimum of surface warping. Materials such as earthen soil, grass, gravel, wood chips, or sand, often used for outdoor walkways, are neither firm nor stable, nor can they generally be considered slip-resistant and are not to be used for sidewalk construction. Only solid materials such as hydraulic cement concrete and asphalt concrete are to be used for constructing pedestrian facilities.

A sidewalk material detail shall be shown on the plan typical sections. Concrete sidewalks shall be constructed with hydraulic cement concrete a minimum of 4 inches in depth. Asphalt concrete sidewalks shall use the pavement design for shared use paths. See FIGURE A(1)-12 SHARED USE PATH PAVEMENT STRUCTURE for details.

Sidewalks along Curb and Gutter and/or Curb Section Streets

1. Sidewalks along streets with curb (or curb and gutter) shall be constructed with hydraulic cement concrete sidewalk and have a 1 foot wide minimum graded area (same cross slope as sidewalk, 2.0% max.) behind the back of the sidewalk.

2. Concrete sidewalks shall be constructed in accordance with the VDOT’s Road and Bridge Specifications for hydraulic cement concrete sidewalk, on a compacted subgrade, and include underdrains in accordance with the VDOT’s Road and Bridge Standards, Section 100, Standard UD-3.

3. Solid paver unit sidewalks shall be constructed in accordance with VDOT’s Location and Design Instructional & Information Memoranda IIM-LD-218, Paver Units (Sidewalk and crosswalk).

Sidewalks along Shoulder and Ditch Section Streets

1. Sidewalks along shoulder and ditch streets shall be constructed behind the ditch and have a 1 foot wide minimum graded area (same cross slope as sidewalk, 2.0% max.) between the ditch and the sidewalk as well as a 1 foot wide minimum graded area (same cross slope as sidewalk, 2.0% max.) behind the back of the sidewalk.

2. Sidewalk shall be constructed in accordance with VDOT’s Road and Bridge Specifications for asphalt concrete sidewalk or hydraulic cement concrete sidewalk, on a compacted subgrade, and include underdrains in accordance with VDOT’s Road and Bridge Standards, Section 100, Standard UD-3.

Vertical Surface Discontinuities

Pedestrian access route vertical surface discontinuities (difference in surface elevation) shall be limited to 0.25 inch maximum; however, surface discontinuities that are between 0.25 inch and 0.50 inch shall be allowed if beveled with a slope no greater than 2:1, provided that the bevel extends along the entire width of the surface discontinuity.

Note the allowance for vertical discontinuities are for existing conditions and are not to be used for new construction or reconstruction of a pedestrian facility. This is a flexibility that is provided in PROWAG for settlement, tree root growth etc.
Drainage Grates

When Drainage Grates are placed in sidewalks they shall have openings no greater than 0.50 inch wide in the direction of travel. If grates have elongated openings, they shall be placed so that the long dimension of the opening is perpendicular to the dominant direction of travel as shown below. All efforts shall be made to avoid grates being located in pedestrian access routes.

Vertical and Horizontal Separation

- Curb and Gutter and/or Curb Typical Sections
  Sidewalks shall be separated both vertically and horizontally from the adjacent roadway. Vertical separation shall be created through the installation of curb and gutter and/or curb. Horizontal separation can be achieved through the installation of a buffer strip, landscaping or furniture zones for benches, planters, literature display boxes, or similar clearly defined features or surfaces that will help guide persons who may otherwise unintentionally enter the vehicular way. If required horizontal separation is not provided via a buffer strip, a Design Waiver shall be submitted in accordance with IIM-LD-227.

- Shoulder and Ditch Typical Sections
  Sidewalks constructed along a shoulder and ditch section shall be placed behind the ditch in a manner that will be compatible with the roadway if the roadway is later converted to a curb or curb and gutter section. (Note: Placement of sidewalk within the shoulder area is not permitted.)

CROSSWALKS (PEDESTRIAN STREET CROSSINGS)

In all cases, whether new construction or reconstruction, crosswalk lengths shall be kept as short as practical in order to minimize pedestrian exposure to traffic. Newly constructed or reconstructed intersections with crosswalk designs preferably should align the crosswalk to be perpendicular to the mainline route to be crossed. In all cases, whether new construction, reconstruction, or alterations, crosswalk markings shall connect directly from curb ramp to curb ramp across the full width of the crossing with no changes in direction. Other considerations that impact the design of crosswalks such as pedestrian volume, curb radii, curb ramp placement, visibility of pedestrians, pedestrian desire lines, speed of vehicles at the crosswalk location, stop
bar locations, and intersection operational factors such as signal timings and clearance intervals shall be carefully considered. For a more detailed description of these considerations and factors, refer to section 3.6 of AASHTO's Guide for Planning, Design, and Operation of Pedestrian Facilities, 2021.

Crosswalks that cross connections to the mainline roadway should be perpendicular to the connection. However in cases where the connection is skewed the crosswalk should be parallel to the mainline roadway.

Special attention needs to be given to profile grades and the location of crosswalks since the cross slope of the crosswalk will be incorporated into the profile grade.

Note: Crosswalks that are skewed horizontally from the profile alignment could result in cross slopes that exceed the maximum allowable cross slope.

The crosswalk cross slope shall be 2.0% maximum at all intersections, including roundabouts, where pedestrian access routes are contained within crosswalks with yield or stop control.

Where pedestrian access routes are contained within crosswalks without yield or stop control, the cross slope of the pedestrian access route shall be 5.0% maximum. A crosswalk without yield or stop control is defined as a location where there is no yield or stop sign such as highway entrance or exit ramps, or where there is a traffic signal that is designed for the green phase. At crosswalks without yield or stop control, vehicles can proceed through the intersection without slowing or stopping.

Midblock Crossings - Where pedestrian access routes are contained within midblock crosswalks, the cross slope of the pedestrian access route shall be permitted to equal the street or highway grade.

CURB RAMPS

General
For all new construction, and reconstruction projects that include curb ramps for pedestrian access routes, in public rights of way, the curb ramp design shall comply with these design criteria.

For all new construction and reconstruction, curb ramp access shall be evaluated as part of the project design.

All curb ramps shall be constructed in full compliance with VDOT’s Road and Bridge Standard CG-12.

A curb ramp is required to provide access to and from pedestrian access routes for users of all ages and abilities. This access is beneficial to pedestrians, and users of wheelchairs, canes, crutches, walkers, braces, lower-limb prostheses, along with persons with gait balance and stamina disabilities, the elderly, and persons with visual disabilities (such as depth perception difficulties).

There are four objectives related to this goal:
1. Provide a curb ramp design and placement that is usable by persons with disabilities.
2. Provide design and placement alternatives for a range of sidewalk and street conditions.
3. Provide minimal negative impact to all pedestrians.
4. Place curb ramps in uniform and consistent locations.

**DESIGN GUIDELINES FOR CURB RAMPS**

The design guidelines are based on a standard barrier curb height of 6 inches. Curb heights that are less than or greater than 6 inches will require the ramp lengths be adjusted. See VDOT Road and Bridge Standard CG-12 Type B.

Gutter slopes at curb ramp locations shall not exceed 20:1 (5.0%). This requires the standard gutter pan to transition from a 12:1 to a 20:1 slope in accordance with VDOT’s Road and Bridge Standard CG-12.

Objects such as utility covers, manhole covers, vault frames and covers, and grates shall not be located within curb ramps. This includes the ramp portion, landings, turning space, wings, detectable warning, or the gutter area within the pedestrian access route.

**GUIDELINES FOR CURB RAMP LOCATIONS**

Curb ramps shall be provided to ensure a person with a mobility disability can travel from a sidewalk down to street level on one side of the street, over or through any median curbs or traffic islands, and up to the receiving sidewalk.

The Project Designer should coordinate, early in the design process with District Location and Design and District Traffic Engineering concerning crosswalk locations to determine the shortest and most appropriate crossing locations. The Central Office Location and Design Policies and Procedures Section is available should the designer need assistance with project specific crosswalk locations.

Steps for locating curb ramps:

1. Determine the pedestrian’s destination and their current route.
2. Identify locations for pedestrians to cross the roadway that reduce the crossing distance and optimize safety.
3. Is there an established pedestrian access route network? The route may be a sidewalk or sidewalk space through intersections.
4. Determine the best type of curb ramp (CG-12, Type A, B or C) for each location.
5. Evaluate possible conflicts with curb ramps, such as light poles, fire hydrants, traffic control devices, signs, utilities, drainage structures, etc. and coordinate the revised fixed object locations as necessary to install curb ramps for each pedestrian street crossing.

Curb ramps or a combination of curb ramps shall connect the pedestrian access routes at each pedestrian crossing to provide the shortest crossing distance.

**One curb ramp shall be provided for each pedestrian street crossing and shall be in-line with the direction of pedestrian travel and the receiving curb ramp. The use of diagonal curb ramps or placing curb ramps at the apex of a radius for new construction or reconstruction is prohibited.**
Curb ramps are **not** required to be placed at all quadrants of an intersection. However, in these situations/contexts, the pedestrian access route is then the location served by the curb ramps.

Note: The installation of curb ramps or landings where there is no sidewalk or pedestrian facility is not permitted. Curb ramps shall not be installed that lead to ditches, parking lots, vertical obstructions, or other non-traversable area.

Curb ramps (excluding any flared sides) **shall** be contained wholly within the width of the pedestrian street crossing served. Crosswalk markings shall be located a minimum of 4 feet in front of the vehicle stop bar, if one exists. The Project Designer should discuss the relationship between crosswalks, stop bars and curb ramps with the Traffic Engineering Designer throughout the design of a project.

On new construction and reconstruction projects, utility poles, traffic control devices (such as sign, signal and lighting structures), fire hydrants, and drop inlets shall **not** be located within the pedestrian access route or obstruct the pedestrian access route to the curb ramp. Because the location of curb ramps may be adversely affected by obstructions, the curb ramp location shall have priority over the location of potential obstructions.

Pedestrian access routes that cross medians and refuge islands shall be a minimum of 6 feet in length in the direction of pedestrian travel and include a ramp or cut-through at street level a minimum of 6 feet wide and include detectable warning surfaces. See VDOT *Road and Bridge Standard* CG-12 and Median (M1 or M2) or Refuge Island (RI1 or RI2). Note: In situations where a median or refuge island is less than 6 feet in length in the direction of pedestrian travel, detectable warning surfaces shall **not** be provided (i.e. - 4 feet medians). Where the median is less than 6 feet in length in the direction of pedestrian travel, consideration should be given to placing the crosswalk in front of the median nose.

**MAXIMUM REACH RANGE**

Curb ramps and landing areas provide a clear space for pedestrians and wheelchair users to maneuver or change direction and provide an area to access items such as electric vehicle charging stations, signal actuating buttons, drinking fountains, telephones, kiosks, and other pedestrian elements. These items are considered unobstructed, and are required to meet the unobstructed reach distance as described in PROWAG and ADA.

- The reach to all items mentioned above is a maximum of 10 inches measured from the edge of the clear space to the center of the actual item.
- The clear space shall be within the reach range of the item to be accessed by the user.
- The item to be accessed should be centered along one side of the clear space and shall not be located within 12 inches of either end of the clear space.

Source US Access Board PROWAG:
R406.3 Unobstructed Side Reach
Where a clear space allows a parallel approach to an element and the side reach is unobstructed, the high side reach shall be 48 inches maximum and the low side reach shall be 15 inches minimum above the finish surface. An obstruction shall be permitted between the clear space and the element where the depth of the obstruction is 10 inches maximum.

CURB RAMP ELEMENTS
A curb ramp typically consists of four parts: Landing, Flare, Ramp, and Detectable Warning Surface extending the full width of either the ramp or landing

- **Landing**
  A level area of a curb ramp with a cross slope of less than 48:1 (2.0%). For perpendicular curb ramps, the landing allows pedestrians to bypass the flares and ramp and provides a level maneuvering space (turning space) for persons using wheelchairs entering or exiting the ramp. For parallel curb ramps, the landing is between the ramps and the clear width shall be a least as wide as the curb ramp.

- **Flare**
  The area where a pedestrian circulation path crosses the curb ramp, which shall be sloped 10.0% maximum, measured parallel to the curb line. A part of the pedestrian circulation path, but not a part of the pedestrian access route. Curb ramps whose sides have returned curbs provide useful directional cues where they are aligned with the pedestrian street crossing.

- **Ramp**
  The area of the curb ramp that leads to street level or a street level landing with a maximum running slope of 12:1 (8.0%). Grade breaks at the top and bottom of the ramp shall be perpendicular to the direction of the ramp. Grade breaks shall not be permitted within ramp runs or landings/turning spaces.

- **Detectable Warning Surface**
  The ADA Standards require that curb ramps include features called “detectable warnings.” Detectable warnings consist of a series of small domes that contrast in color with the surrounding sidewalk or street. They must be integrated into the walking surface, and there are specific measurements for the size and spacing of the domes. See VDOT Road and Bridge Standards
CURB RAMP TYPES

The type of curb ramp is determined by the direction the user is traversing the ramp in relation to the vehicular path of travel. The three (3) types of curb ramps are:

Perpendicular Curb Ramp (CG-12, Type A)

A curb ramp, normally perpendicular to the curb at the street crossing, with a maximum running slope of 12:1 (8.0%) and a 48:1 (2.0%) maximum level landing at the top. The bottom of the ramp run, exclusive of flared sides (10:1 (10.0%) maximum slope), shall be located within the crosswalk. The cross slope shall be 48:1 (2.0%) maximum. (See Standard CG-12, Type A in the VDOT Road and Bridge Standards.)

FIGURE A(1)-16 PERPENDICULAR CG-12 TYPE A
Parallel Curb Ramp (CG-12, Type B)

Parallel ramps consists of two ramps joined in the middle by a landing that is level with the roadway. Parallel curb ramps run parallel to the curb and usually take up the whole width of the sidewalk.


They are especially suited to narrow right-of-way where there is insufficient space for the top landing of a perpendicular curb ramp. In this case, the bottom landing usually serves as the direct connection to the street crossing and shall be located within the crosswalk. Parallel curb ramp running slope (grade) 12:1 (8.0%) maximum cross slope 48:1 (2.0%) maximum, and a landing at the bottom of the ramp. The running slope (grade) of parallel curb ramps will be affected by the slope of the sidewalk, which is permitted to be as steep as the adjacent roadway. Thus, a maximum slope of 12:1 (8.0%) may not be achievable due to the roadway grade. In recognition of this, the required length of a parallel ramp is limited to 15 feet when the running slope (grade) of the adjacent roadway exceeds 5.0% with a 6 inch curb height. Note this does not apply to pedestrian access routes that are independently graded. (See Standard CG-12, Type B in the VDOT Road and Bridge Standards.)

FIGURE A(1)-17 PARALLEL CG-12 TYPE B
**Combined (Perpendicular & Parallel) Curb Ramp (CG-12, Type C)**

*Combined curb ramps* are a combination of the perpendicular and parallel curb ramp designs. The combined curb ramp breaks the elevation change between the curb and the street into two parts, and uses a separate ramp to bridge each part: a parallel ramp from the sidewalk to a level landing, and a perpendicular ramp from the level landing to the roadway.

This alternative is typically used when public pedestrian right of way width established by local or state regulation, guideline, or practice will not accommodate a perpendicular curb ramp. A segment of the sidewalk is ramped or depressed to a relatively level landing to accomplish part of the level change and the balance is achieved by a short perpendicular curb ramp. (See Standard CG-12, Type C in the VDOT Road and Bridge Standards.)

![Figure A(1)-18 Parallel and Perpendicular CG-12 Type C](image-url)

**FIGURE A(1)-18 PARALLEL AND PERPENDICULAR CG-12 TYPE C**
CURB RAMP APPLICATION DETAILS

One Curb Ramp shall be provided for each pedestrian street crossing. (CG-12, Type A, B or C)

FIGURE A(1)-19 TWO CG-12 TYPE B FOR EACH (PEDESTRIAN STREET CROSSING)
FIGURE A(1) - 20 CG-12 TYPE B LAYOUT WITHOUT BUFFER STRIP

There may be situations where right of way restrictions dictate the above ramp configuration. It shall not be used where right of way or a pedestrian access route continues around the radius.
This is similar to Figure A(1)-20* (above) except with a buffer strip. **It shall not be used where right of way or a pedestrian access route continues around the radius.**
ALTERATION PROJECTS THAT AFFECT CURB RAMPS

Alterations to pedestrian access routes, curb ramps, or a pedestrian street crossing in the public right of way shall be made so that adjacent segments on the pedestrian access route are readily accessible to and usable by individuals with disabilities. These requirements are set forth by federal regulations (28 CFR Part 35) which requires the pedestrian facility meets accessibility guidelines. Refer to IIM-LD-55 for more information on VDOT’s policy on accessibility guidelines.

The design criteria in the previous section titled: “PEDESTRIAN ACCESS ROUTE (SIDEWALK OR SIDEWALK SPACE) AND CURB RAMPS”, apply to alteration projects.

The allowances provided in this section are ONLY for curb ramp locations and their respective designs where the existing physical or site constraints will not permit full compliance with VDOT’s Road and Bridge Standard CG-12.

The US Department of Justice (DOJ) and US Department of Transportation (DOT) do not consider maintenance activities, such as joint repair, pavement patching (filling potholes), shoulder repair, signing, striping, minor signal upgrades, and repairs to drainage systems to be an alteration project. DOJ and DOT issued Guidance on Street Resurfacing Project Requirements to provide Curb Ramps when Street, Roads, or Highways are Altered through Resurfacing dated July 8, 2013 http://www.ada.gov/doj-fhwa-ta.htm, http://www.ada.gov/doj-fhwa-ta-glossary.htm and issued a Supplement to the 2013 DOJ/DOT Joint Technical Assistance Document on December 1, 2015 http://www.ada.gov/doj-fhwa-ta-supplement-2015.html. For additional information relative to this guidance consult with the Traffic Engineering Division.

When sidewalk or curb ramp improvements are made that cross any entrance the entrance cross slopes shall be evaluated. If the cross slope of the entrance exceeds a 2.0 % maximum the entrance shall be reconstructed in accordance with the VDOT Road and Bridge Standards. This work may be accomplished by using temporary construction easement as mentioned in the VDOT Road Design Manual, Chapter 2E.

Alteration projects shall incorporate accessibility improvements to existing pedestrian facilities to the extent that those improvements are in the scope of the project without regard to cost.

Definitions:

Note: Definitions contained in the previous section titled: “PEDESTRIAN ACCESS ROUTE (SIDEWALK OR SIDEWALK SPACE) AND CURB RAMPS” apply to alteration projects.

Alteration - A change to an existing pedestrian facility in the public right-of-way that affects or could affect access, circulation, or use.

Maximum Extent Feasible - means no prudent, practical, and feasible alternative exists, and all possible planning to minimize potential harm has been undertaken. The phrase, to “the maximum extent feasible” applies to the occasional case where the nature of an existing facility makes it virtually impossible to comply fully with applicable accessibility standards through a planned alteration. In these circumstances, the alteration shall comply with applicable accessibility standards.
to the “maximum extent feasible”. Economic hardship alone shall not be sufficient justification to demonstrate “maximum extent feasible”.

Technically Infeasible- Means, with respect to an alteration of a pedestrian facility, that it has little likelihood of being accomplished due to existing site or structural conditions, or because other existing physical or site constraints prohibit modification or addition of elements or features that are in full compliance with the minimum design criteria.

How is “technically infeasible” applied to alteration projects?
Determining “technical infeasibility” on projects requires a site-specific assessment of constraints or complications in relation to the planned scope of work. Technically Infeasible, as defined above, is intended to encompass design, site, engineering or other constraints that prohibit full compliance with VDOT CG-12 curb ramps. Examples include work where existing physical or site constraints make it impracticable for altered elements, spaces, or pedestrian facilities to fully comply with the criteria for new construction. Existing physical or site constraints include, but are not limited to, underlying terrain, right-of-way availability, underground structures and utilities, adjacent developed facilities, drainage and drainage structures, or the presence of a notable natural or historic feature.

ALTERATION PROJECT TYPES
Alteration projects are projects where the scope of work is focused on certain items within the right of way that affect pedestrian facilities. The pedestrian facilities that are impacted by this work shall be designed and constructed to be accessible by all users. These facilities are required to be evaluated and brought up to the current standards to the maximum extent feasible.

The following are some examples of project types that are considered Alteration Projects:
- Improvements to an existing pedestrian facility, within the existing right of way, not associated with a roadway construction project
- Pavement resurfacing
- Pedestrian signal installation
- Traffic signal upgrade and installation projects where Accessible Pedestrian Signals (APS) and Accessible Pedestrian Signal Detectors (APD) are existing or proposed.

For assistance in determining if a project is an alteration contact the Location & Design Division Policies and Procedures Section.

CURB RAMPS ALTERATION PROJECTS
When alteration projects are scoped, existing curb ramp locations and designs shall be evaluated as part of the project design. One curb ramp shall be provided for each pedestrian street crossing and shall be in-line with the direction of pedestrian travel and the receiving curb ramp. When a curb ramp is placed the curb ramps shall be constructed to full compliance with VDOT’s Road and Bridge Standard CG-12. However, where full compliance with VDOT’s Road and Bridge Standard CG-12 is “technically infeasible”, curb ramps shall comply with VDOT’s Road and Bridge Standard CG-12 to the “maximum extent feasible”.

VDOT recognizes that there will be rare instances when it will be technically infeasible for a curb ramp to be constructed in full compliance with the requirements of VDOT CG-12 Standards because of physical or site constraints. In these instances, curb ramps shall be constructed that provide accessibility to the “maximum extent feasible”. In order to reach a conclusion about
technical infeasibility, the designer will need to consider the extent to which physical or site constraints can be addressed by alternative (Retrofit) curb ramp designs. Examples of alternative (retrofit) ramp designs are provided in this document.

For alteration projects where existing physical or site constraints prevent providing one curb ramp for each pedestrian street crossing, a single diagonal curb ramp may be permitted to serve both pedestrian street crossings. The designer must demonstrate that providing a curb ramp for each pedestrian street crossing is not technically feasible. This should be documented in the project file.

Curb ramps are not required to be placed at all quadrants of an intersection. However, in these situations/contexts, the pedestrian access route is then the location served by the curb ramps that are provided. In some instances a pedestrian street crossing (crosswalk) and the associated curb ramps may need to be removed because proper access cannot be provided or relocated to accommodate the pedestrians or the pedestrian access route.

The ramp portion of curb ramps to be constructed where space limitations prohibit the use of a 12:1 (8%) slope or less, may have slopes and rises as follows:

- A slope between 10:1 (10%) and 12:1 (8%) is allowed for a maximum rise of 6 inches.
- A slope between 8:1 (12.5%) and 10:1 (10%) is allowed for a maximum rise of 3 inches.

CROSSWALKS (PEDESTRIAN STREET CROSSINGS) ALTERATION PROJECTS

Alteration projects that relocate an existing marked crosswalk or convert an unmarked crosswalk to a marked crosswalk shall provide curb ramps that connect to the existing sidewalk. If there is not an existing sidewalk, a transition sidewalk segment shall be provided to connect the curb ramps or landing areas to the pedestrian access route.

Source US Access Board PROWAG:
R202.3.2 Transitional Segments
Transitional segments of pedestrian access routes shall connect to existing unaltered segments of pedestrian circulation paths and shall comply with R302 to the extent practicable.

For curb or curb and gutter typical sections a curb ramp is required at each end of the crosswalk that connects to the sidewalk or pedestrian access route. In locations where a sidewalk is not present, a transitional sidewalk segment shall be provided to connect the curb ramp to the pedestrian access route.

For shoulder typical sections where there is no curb or curb and gutter present a minimum 5 foot by 5 foot concrete landing is required to be provided outside of the graded shoulder. The landing area shall have a 2.0% maximum cross slope in all directions along with detectable warning surfaces installed in line with the crosswalk. A transition sidewalk segment shall be provided to connect the landing area to the pedestrian access route.

Any transitional sidewalk segment that does not connect to an existing sidewalk or existing pedestrian facility, but provides access to an adjacent street or roadway identified as being used by pedestrians requires additional design considerations. These design considerations should include
pedestrian accessibility, pedestrian visibility, posted speed of the adjacent street or roadways, vehicular traffic volumes, pavement markings, and the vehicular queuing characteristics of the location where the curb ramps are placed. These locations shall provide a means for pedestrians to access the pedestrian access route without requiring undue exposure to vehicular traffic in the physical area of the intersection, whether on the mainline or the connecting street. The designer shall discuss these locations with the District Location and Design Engineer and the District Traffic Engineer to ensure that the proposed design will be accessible to all pedestrians. If additional assistance is needed, contact the Central Office Policies and Procedures Section.

If it is determined that a transitional sidewalk segment is technically infeasible, the justification for not providing the transitional sidewalk segment shall have supporting documentation. A request for not providing the transitional sidewalk segment, including the justification, shall be submitted to the State Location and Design Engineer for final approval.

Note: The installation of curb ramps or landings where there is no sidewalk or pedestrian facility is not permitted. Curb ramps shall not be installed that lead to ditches, parking lots, vertical obstructions, or other non-traversable area.

CG-12 CURB RAMP (RETROFIT) INTO EXISTING CURB AND GUTTER AND/OR SIDEWALK LOCATIONS

When retrofitting a CG-12 into an existing curb or curb and gutter location and/or sidewalk or sidewalk space location, evaluation must be made for the most appropriate type of CG-12 configuration to match existing conditions with consideration of grade, type of curb or curb and gutter, pedestrian access route, available crosswalks, R/W, location of utilities, location of drainage structures, and any other features that may prohibit or affect the location and design of the curb ramp in accordance with VDOT’s Road and Bridge Standards Standard CG-12.

The existing curb or curb and gutter will need to be removed in the area of the curb ramp. If there is existing sidewalk it may need to be removed back to the point where the proposed curb ramp will meet the existing sidewalk grade. A new curb or curb and gutter will need to be placed to match the existing edge of pavement and to tie to the proposed CG-12 as called for on the plans by type. This will result in a warped surface area of 20:1 rather than the normal gutter slope of in the area approaching the curb ramp.

Each CG-12 for alteration projects that do not comply with VDOT’s Road and Bridge Standard CG-12 shall be designed and shown in detail on the plans. If additional assistance is needed, contact the Central Office Policies and Procedures Section Manager or the Central Office Special Design Section Engineer.

The following pages show Examples of CG-12 curb ramps (configurations and retrofits) for alteration projects when full compliance with VDOT’s Road and Bridge Standard CG-12 is “technically infeasible”. Each curb ramp shall comply with VDOT’s Road and Bridge Standard CG-12 to the “maximum extent feasible”. For example, space limitations may prohibit a maximum slope of 12:1 (8%), see Curb Ramp Alteration Projects earlier in this section. However, ramps and landings shall be a minimum of 4 feet wide.
When the sidewalk does **not** continue around the radius.

When the sidewalk continues around the radius.
Offsetting sidewalk to avoid an existing object.
Offsetting sidewalk to avoid an existing object.

Offsetting curb ramp to avoid an existing object.
Eliminating flares to avoid an existing object.
(Eliminating flares require a turning space at the back of the ramp)
Existing diagonal is removed and one pedestrian street crossing is provided.
ALTERATION PROJECTS USING DIAGONAL OR CORNER TYPE CURB RAMP

The use of diagonal or corner type curb ramps (blended transitions) placed at the apex of a radius are for alteration projects only and are prohibited for new construction and reconstruction. The designer shall exhaust all means to provide one curb ramp for each pedestrian street crossing that aligns with the pedestrian direction of travel before considering the use of a diagonal curb ramp or corner type ramp (blended transition). A diagonal or corner type curb ramp (blended transitions) may be used when the designer has determined that it is technically infeasible to provide one curb ramp for each direction of crossing. Contact the Policy and Procedures Section for assistance in making this determination.

Diagonal or corner type curb ramps with returned curbs or other well-defined edges shall have the edges parallel to the direction of pedestrian flow. The bottom of diagonal curb ramps shall have a clear turning space 4 feet square minimum within the crosswalk markings outside active traffic lanes of the roadway.

Diagonal curb ramps with flared sides shall have a segment of curb 2 feet long minimum located on each side of the curb ramp or landing and shall be contained wholly within the marked crossing as shown below. CG-12’s Type A, B and C can be constructed as Diagonal Curb Ramps. However certain criteria apply. See Figures A(1)-22, A(1)-23, and A(1)-24 for criteria.

Note: Diagonal or corner type curb ramps force pedestrians descending the ramp to proceed into the intersection before turning to the left or right to cross the street and therefore, make it more difficult for individuals with vision impairments to determine the correct crossing location and direction. Persons with visual impairments may also mistake a diagonal curb ramp for a perpendicular curb ramp and unintentionally travel into the middle of the intersection. The designer should consider the intersection skew when using this layout.

Note: Blended transitions shall not be used where the curb radius is greater than 15 feet. Blended transitions shall only be permitted when one ramp for each pedestrian street crossing (crosswalk) or a single diagonal curb ramp cannot be used or corner type curb ramp has been deemed technically infeasible.
Diagonal or Corner Type Curb Ramps shall **not** be used for new construction or reconstruction.
When only one curb ramp is provided for two crossings, it is important to provide sufficient space (Minimum 5' x 4') to maneuver a wheelchair into the crosswalk without going into the travel way.

FIGURE A(1)-23 SINGLE (DIAGONAL OR CORNER TYPE) PARALLEL CURB RAMP CG-12, TYPE B

(To be used for Alteration Projects Only)

For alteration projects, this alternative may be considered when the distance between two CG-12, Type B’s is insufficient to install a separate landing for each. This layout shall provide a level landing area or maneuvering space (5 feet x 4 feet) at the bottom of the ramp and outside of the travelway as shown above.

Single diagonal parallel curb ramps shall not be used for new construction or reconstruction.
FIGURE A(1)- 24 SINGLE (DIAGONAL OR CORNER) PARALLEL CURB RAMP CG-12, TYPE B WITH AN ENLARGED LANDING AREA (BLENDED TRANSITION)

(To be used for Alteration Projects Only)

For alteration projects only where the distance between two CG-12, Type B’s is insufficient to install a separate landing for each or where a single Type B ramp cannot be installed. This layout shall provide a level landing area or maneuvering space (4 feet x 4 feet) at the bottom of the ramp and outside of the travelway as shown above.

Single Diagonal Parallel Curb Ramps shall **not** be used for new construction or reconstruction.
BUFFER STRIP

The space provided between the back of curb and the sidewalk for the placement of all lateral obstructions (landscaping, fire hydrants, street lights, parking meters, signal control boxes, signal, sign and utility poles, etc.) to ensure that the pedestrian access route is free of obstacles. The buffer strip shall be graded at 1/4 inch per foot (2% max.). When possible, signal poles and signal control boxes should be located behind the sidewalk to minimize conflict with intersection sight distance.

- Width

Buffer strips shall be 4 feet wide to provide the lateral offset for the placement of conventional signs (36”x36” wide) for Posted Speeds greater than 25 mph in accordance with the MUTCD, Part 2 (See Figure A(1)-25, Detail 1). Buffer strips 3 feet wide may be utilized to provide the lateral offset for the placement of smaller signs (24”x24” wide) for Posted Speeds 25 mph and less (See Figure A(1)-25, Detail 2). However, a Design Waiver shall be submitted for buffer strips less than 4 feet for Posted Speeds greater than 25 mph, and for buffer strips less than 3 feet for Posted Speeds 25 mph or less; see IIM-LD-227. In unique situations where no buffer strip is provided, additional right of way shall be acquired behind the sidewalk for the placement of lateral obstructions (sign, utility poles, landscaping, fire hydrants, street lights, parking meters, signal control boxes, and signal poles, etc.) as well as proposed drainage structures. The Roadway Designer should coordinate with the Traffic Engineering Designer to determine the amount of right of way necessary.

The Roadway Designer has the option to meander sidewalk or construct a wider sidewalk to accommodate the minimum lateral offset for signs while maintaining a minimum clear width of 5 feet for the Pedestrian Access Route.
FIGURE A(1)- 25 SIGN PLACEMENT IN BUFFER STRIPS

**DETAIL 1**

Typical Urban Projects
Greater than 25 mph
Posted Speed

**DETAIL 2**

Subdivision Streets
25 mph Posted Speed and Less
RAILING REQUIREMENTS

Railing (HR-1, Type II) is required:

Where the sidewalk is adjacent to a parallel water hazard (greater than 2 feet deep), other obvious hazard or downward slope of 2:1 or steeper and a drop-off of 4 feet or more, a minimum 5 foot wide separation from the back edge of the sidewalk to the top of slope is required. When the separation from the back edge of the sidewalk to the top of the slope is less than 5 feet, a railing (HR-1, Type II) is required. When a sidewalk is constructed adjacent to a retaining wall or a structure with a drop-off of 1 foot or more, a railing (HR-1, Type II) is also required.

Note: When railing is required and the grade of the sidewalk is 5% or greater a gripping rail is required.

When a railing (HR-1, Type II) is required, contact the Location and Design Standards and Special Design Section for details. Also see VDOT Road and Bridge Standards.

![Diagram of Railing for Sidewalks](image)

**FIGURE A(1)-26 RAILING FOR SIDEWALKS**
SIDEWALK TRANSITION FROM ROADWAY ONTO BRIDGE

FIGURE A(1)- 27 SIDEWALK TRANSITION FROM ROAD ONTO BRIDGE FOR DESIGN SPEED >45
SECTION 3 PARKING DESIGN FEATURES

ON-STREET PARKING

Parallel Parking

Parallel parking is the preferred arrangement for on-street parking. Provisions for on-street parallel parking are allowed on roadways functionally classified as collectors or locals where the posted speed limit is 35 mph or less. See Secondary Street Acceptance Requirements (SSAR) 24 VAC 30-92-120 Design and agreement Requirements.

The use of curb and gutter and/or shoulder and ditch designs for on-street parking will be accommodated, using the following widths for the parking lane:

- Residential and mixed-use local streets – 7 feet in width measured from the face of curb.
- Commercial and industrial – 8 feet in width measured from the face of curb

Note: No parking within 20 feet of any intersection measured from the curb return of the intersection

Perpendicular Angle Parking

Perpendicular and angle parking along streets is normally prohibited. However, perpendicular and angle parking may be allowed on low-speed (25 mph and less), low volume collector and local streets with ground floor commercial uses, primarily those serving as main streets and local streets in Traditional Neighborhood Development (TND) or similar higher-density developments.

Parked vehicle overhangs (distance of 2 feet) shall not reduce the clear width of the pedestrian accessible route (sidewalk) adjacent to the parking spaces, which shall be accomplished by the installation of wheel stops as shown in Figure A(1)-30 and A(1)-31.

Accessible Parking Spaces

Accessible parking spaces should be located where the street has the least crown and grade and located and designed to provide the shortest possible route to key destinations.

Accessible parking spaces and accessible passenger loading zones that serve a particular building shall be located on the shortest possible accessible circulation route to an accessible entrance of the building.

See Table A(1)-9 for the required minimum number of accessible spaces based on the total number of marked or metered parking spaces on the block perimeter.

See Figures A(1)-34, A(1)-35, A(1)-36 and A(1)-37 that illustrate different combinations of Accessible Parking Spaces and Access Aisles that will accommodate cars, trucks and vans.

* Rev. 10/20
Accessible parking spaces shall be identified and designated as reserved by signs and markings displaying the International Symbol of Accessibility. For information on Signing and Marking Accessible Parking Spaces see 502.6 Identification in the Park-and-Ride Lots section.

The information below is from Proposed Guidelines for Pedestrian Facilities in the Public Right-of-Way (PROWAG) dated July 26, 2011, (Chapters R2 and R3).

R214 On-Street Parking Spaces. Where on-street parking is provided on the block perimeter and the parking is marked or metered, accessible parking spaces complying with R309 shall be provided in accordance with Table A(1)-9*. Where parking pay stations are provided and the parking is not marked, each 20 feet of block perimeter where parking is permitted shall be counted as one parking space.

<table>
<thead>
<tr>
<th>Total Number of Marked or Metered Parking Spaces on the Block Perimeter</th>
<th>Required Minimum Number Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 25</td>
<td>1</td>
</tr>
<tr>
<td>26 to 50</td>
<td>2</td>
</tr>
<tr>
<td>51 to 75</td>
<td>3</td>
</tr>
<tr>
<td>76 to 100</td>
<td>4</td>
</tr>
<tr>
<td>101 to 150</td>
<td>5</td>
</tr>
<tr>
<td>151 to 200</td>
<td>6</td>
</tr>
<tr>
<td>201 and over</td>
<td>4% of total</td>
</tr>
</tbody>
</table>

**TABLE A(1)-9* ON-STREET PARKING SPACES**

Advisory R214 On-Street Parking Spaces. The MUTCD contains provisions for marking on-street parking spaces (see Section 3B.19). Metered parking includes parking metered by parking pay stations. Where parking on part of the block perimeter is altered, the minimum number of accessible parking spaces required is based on the total number of marked or metered parking spaces on the block perimeter.

R215 Passenger Loading Zones. Where passenger loading zones other than transit stops are provided, at least one accessible passenger loading zone complying with R310 shall be provided for each 100 feet of continuous loading zone space or fraction thereof.

R309 On-Street Parking Spaces

R309.1 General. On-street parking spaces shall comply with R309.

Advisory R309.1 General. R214 specifies how many accessible parking spaces must be provided on the block perimeter where on-street parking is marked or metered. Accessible parking spaces must be identified by signs displaying the International Symbol of Accessibility (see R211.3 and R411). Accessible parking spaces should be located where the street has the least crown and grade and close to key destinations.

R309.2 Parallel Parking Spaces. Parallel parking spaces shall comply with R309.2.

Advisory R309.2 Parallel Parking Spaces. The sidewalk adjacent to accessible parallel parking spaces should be free of signs, street furniture, and other obstructions to permit deployment of a van side-lift or ramp or the vehicle occupant to transfer to a wheelchair or scooter. Accessible parallel parking spaces located at the end of the block face are usable by vans that have rear lifts and cars that have scooter platforms.

R309.2.1 Wide Sidewalks. Where the width of the adjacent sidewalk or available right-of-way exceeds 14.0 ft., an access aisle 5.0 ft. wide minimum shall be provided at street level the full length of the parking space and shall connect to a pedestrian access route. The access aisle shall comply with R302.7 and shall not encroach on the vehicular travel lane. See Figure A(1)-28*.

* Rev. 10/20
R309.2.2 Narrow Sidewalks. An access aisle is **not** required where the width of the sidewalk between the extension of the normal curb and boundary of the public right-of-way is less than 14 feet. When an access aisle is **not** provided, the accessible parking space shall be located at either the end of the block closest to the CG-12 curb ramp at the street crossing. See Figure A(1)-29.

**Advisory R309.2.2 Narrow Sidewalks.** Vehicle lifts or ramps can be deployed on an 8 feet sidewalk if there are no obstructions.

**Note:** Corner clearance (i.e., the distance from the end of the intersection curb return to the nearest edge of on-street parking) shall be 20 feet. If a traffic control device faces the parking channel, the distances should be 30 feet. Under all circumstances, on-street parking shall not be permitted where it will obstruct necessary sight distance.

R309.3 Perpendicular or Angled Parking Spaces. Where perpendicular or angled parking is provided, an access aisle 8 feet wide minimum shall be provided at street level the full length of the parking space and shall connect to a pedestrian access route (via a curb ramp) serving the space. The Access aisle shall be marked so as to discourage parking in the access aisle. Two Accessible Parking Spaces are permitted to share a common access aisle. See Figures A(1)-30 and A(1)-31*.

**Advisory R309.3 Perpendicular or Angled Parking Spaces.** Perpendicular and angled parking spaces permit the deployment of a van side-lift or ramp.

* Rev. 7/19
Advisory R309.4 Curb Ramps or Blended Transitions. Curb ramps or blended transitions complying with R304 shall connect the access aisle to the pedestrian access route. Curbs shall not be located within the access aisle.

Note: Wheel stops are required when parking spaces (accessible or otherwise) are located perpendicular to the sidewalk / pedestrian accessible route and shall be located a minimum of 2 feet from the face of curb, so that the parked vehicle does not encroach into and reduce the usable width of the sidewalk / pedestrian accessible route. See Figures A(1)-30 and A(1)-35 through A(1)-38*.

PASSENGER LOADING ZONES: Passenger loading zones shall provide a vehicular pull-up space 8 feet wide minimum and 20 feet long minimum. The access aisle serving the vehicle pull-up space shall be 5 feet wide minimum and adjoin a pedestrian route and shall not overlap the vehicular way. Access aisles shall be marked so as to discourage parking in them. See Figure A(1)-30*.

* Rev. 7/20
R309.5 Parking Meters and Parking Pay Stations. Parking meters and parking pay stations that serve accessible parking spaces shall comply with R309.5. Operable parts shall comply with R403.

R309.5.1 Location. At accessible parallel parking spaces, parking meters shall be located at the head or foot of the parking space.

Advisory R309.5.1 Location. Locating parking meters at the head or foot of the parking space permits deployment of a van side-lift or ramp or the vehicle occupant to transfer to a wheelchair or scooter.

R309.5.2 Displays and Information. Displays and information shall be visible from a point located 3.3 feet maximum above the center of the clear space in front of the parking meter or parking pay station.

* Rev. 10/20
R310 Passenger Loading Zones

R310.1 General.
Passenger loading zones shall comply with R310.

Advisory R310.1 General. Accessible passenger loading zones must be identified by signs displaying the International Symbol of Accessibility (See R211.3 and R411).

R310.2 Vehicle Pull-Up Space. Passenger loading zones shall provide a vehicular pull-up space 8 feet wide minimum and 20 feet long minimum.

R310.3 Access Aisle. Passenger loading zones shall provide access aisles complying with R310.3 adjacent to the vehicle pull-up space. Access aisles shall be at the same level as the vehicle pull-up space they serve and shall not overlap the vehicular travel lane. Curb ramps or blended transitions complying with R304 shall connect the access aisle to the pedestrian access route. Curb ramps are not permitted within the access aisle.

R310.3.1 Width. Access aisles serving vehicle pull-up spaces shall be 5.0 feet wide minimum.

R310.3.2 Length. Access aisles shall extend the full length of the vehicle pull-up spaces they serve.

R310.3.3 Marking. Access aisles shall be marked so as to discourage parking in them.

R310.3.4 Surfaces. Access aisle surfaces shall comply with R302.7.

* Rev. 10/20
OFF STREET AND PARK AND RIDE LOTS

All off-street parking areas must include on-site maneuvering areas and aisles to permit vehicles to enter and exit the site in forward drive without hesitation.

Accessible Parking Spaces

In separate parking structures or lots that do not serve a particular building, accessible parking spaces shall be located on the shortest possible circulation route to an accessible pedestrian entrance of the parking facility.

See Table A(1)-10* for the required minimum number of accessible spaces and van accessible parking spaces based on the total number of parking spaces provided in the parking facility.

See Figures A(1)-34, A(1)-35, A(1)-36 and A(1)-37* that illustrate different combinations of Accessible Parking Spaces and Access Aisles that will accommodate cars, trucks and vans.

Accessible parking spaces shall be identified and designated as reserved by signs and markings displaying the International Symbol of Accessibility. For information on Signing and Marking Accessible Parking Spaces see 502.6 Identification in the Park-and-Ride Lots section.

This information is from the 2010 ADA Standards for Accessible Design dated September 15, 2010, (Chapter 2, Section 208, Chapter 5, Section 502)

For additional information, see Figure A(1)-40* PARKING SPACE DESIGN AND ARRANGEMENT FOR PARKING LOTS AND PARK & RIDE LOTS in the Rest Area section of this Appendix. Also see VDOT's Park & Ride Lot Design Guidelines.

R208 Parking Spaces

208.1 General. Where parking spaces are provided, parking spaces shall be provided in accordance with 208.

EXCEPTION: Parking spaces used exclusively for buses, trucks, other delivery vehicles, law enforcement vehicles, or vehicular impound shall not be required to comply with 208 provided that lots accessed by the public are provided with a passenger loading zone complying with 503.

R208.2 Minimum Number. Parking spaces complying with 502 shall be provided in accordance with Table A(1)-10* except as required by 208.2.1, 208.2.2, and 208.2.3. Where more than one parking facility is provided on a site, the number of accessible spaces provided on the site shall be calculated according to the number of spaces required for each parking facility.

Advisory 208.2 Minimum Number. The term "parking facility" is used Section 208.2 instead of the term "parking lot" so that it is clear that both parking lots and parking structures are required to comply with this section. The number of parking spaces required to be

* Rev. 10/20
accessible is to be calculated separately for each parking facility; the required number is not to be based on the total number of parking spaces provided in all of the parking facilities provided on the site.

R208.2.4 Van Parking Spaces. For every six or fraction of six accessible parking spaces required by 208.2 to comply with 502, at least one shall be a “van” parking space complying with 502.

208.3 Location. Parking facilities shall comply with 208.3

208.3.1 General. Parking spaces complying with 502 that serve a particular building or facility shall be located on the shortest accessible route from parking to an entrance complying with 206.4. Where parking serves more than one accessible entrance, parking spaces complying with 502 shall be dispersed and located on the shortest accessible route to the accessible entrances. In parking facilities that do not serve a particular building or facility, parking spaces complying with 502 shall be located on the shortest accessible route to an accessible pedestrian entrance of the parking facility.

* Rev. 7/18
EXCEPTIONS:

1. All van parking spaces shall be permitted to be grouped on one level within a multi-story parking facility.

2. Parking spaces shall be permitted to be located in different parking facilities if substantially equivalent or greater accessibility is provided in terms of distance from an accessible entrance or entrances, parking fee, and user convenience.

<table>
<thead>
<tr>
<th>Total Number of Parking Spaces Provided in Parking Facility</th>
<th>Minimum Number of Required Accessible Parking Spaces</th>
<th>Accessible Parking Spaces</th>
<th>Van-Accessible Parking Spaces</th>
<th>Total Accessible &amp; Van-Accessible Parking Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 25</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26 to 50</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>51 to 75</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>76 to 100</td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>101 to 150</td>
<td></td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>151 to 200</td>
<td></td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>201 to 300</td>
<td></td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>301 to 400</td>
<td></td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>401 to 500</td>
<td></td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>501 to 1000</td>
<td></td>
<td>9</td>
<td>2</td>
<td>11 (2% percent of total)</td>
</tr>
<tr>
<td>1001 and over</td>
<td></td>
<td>20, plus 1 for each 100, or fraction thereof, over 1000</td>
<td>1 for each 6 Accessible Spaces, or fraction 6</td>
<td></td>
</tr>
</tbody>
</table>

**TABLE A(1)-10** OFF-STREET AND PARK & RIDE LOT PARKING SPACES

Source: 2010 ADA Standards for Accessible Design dated September 15, 2010

Chapter 5: Parking Spaces – United States Access Board

* Rev. 10/20
ACCESSIBLE PARKING SPACES

Accessible parking spaces should be located where the street has the least crown and grade and close to key destinations.

See Figures A(1)-35, A(1)-36, A(1)-37 and A(1)-38* that illustrate different combinations of Accessible Parking Spaces and Access Aisles that will accommodate cars, trucks and vans.

Accessible parking spaces shall be identified and designated as reserved by signs and markings displaying the International Symbol of Accessibility. For information on Signing and Marking Accessible Parking Spaces see 502.6 Identification in this section.

R209 Passenger Loading Zones and Bus Stops

R209.1 General. Passenger loading zones shall be provided in accordance with 209.

R209.2 Type Where provided, passenger loading zones shall comply with 209.2.

209.2.1 Passenger Loading Zones.

Passenger loading zones, except those required to comply with 209.2.2 and 209.2.3, shall provide at least one passenger loading zone complying with 503 in every continuous 100 linear feet (30 m) of loading zone space, or fraction thereof.

503.5 Vertical Clearance. Vehicle pull-up spaces, access aisles serving them, and a vehicular route from an entrance to the passenger loading zone, and from the passenger loading zone to a vehicular exit shall provide a vertical clearance of 9.5 feet minimum.

R209.2.2 Bus Loading Zones.

Bus loading zones restricted to use by designated or specified public transportation vehicles, each bus bay, bus stop, or other area designated for lift or ramp deployment shall comply with 810.2.

Advisory 209.2.2 Bus Loading Zones. The terms "designated public transportation" and "specified public transportation" are defined by the Department of Transportation at 49 CFR 37.3 in regulations implementing the Americans with Disabilities Act. These terms refer to public transportation services provided by public or private entities, respectively. For example, designated public transportation vehicles include buses and vans operated by public transit agencies, while specified public transportation vehicles include tour and charter buses, taxis and limousines, and hotel shuttles operated by private entities.

R502 Parking Spaces

R502.1 General. Car and van parking spaces shall comply with 502. Where parking spaces are marked with lines, width measurements of parking spaces and access aisles shall be made from the centerline of the markings.

EXCEPTION: Where parking spaces or access aisles are not adjacent to another parking space or access aisle, measurements shall be permitted to include the full width of the line defining the parking space or access aisle.

* Rev. 10/20
**R502.2 Vehicle Spaces**

Car parking spaces shall be 8 feet wide minimum and van parking spaces shall be 11 feet wide minimum, shall be marked to define the width, and shall have an adjacent access aisle complying with 502.3. See Figure A(1)-33*.

**EXCEPTION:** Van parking spaces shall be permitted to be 8 feet wide minimum where the access aisle is 8 feet wide minimum. See Figure A(1)-34*.

See Figures A(1)-35, A(1)-36, A(1)-37 and A(1)-38* that illustrate different combinations of Accessible Parking Spaces and Access Aisles that will accommodate cars, trucks and vans.

---

* Rev. 1/15
502.3 Access Aisle

Access aisles serving parking spaces shall comply with 502.3. Access aisles shall adjoin an accessible route. Two parking spaces shall be permitted to share a common access aisle.

Advisory R309.4 Curb Ramps or Blended Transitions. Curb ramps or blended transitions complying with R304 shall connect the access aisle to the pedestrian access route. Curbs shall not be located within the access aisle.

Advisory 502.3 Access Aisle. Accessible routes must connect parking spaces to accessible entrances. In parking facilities where the accessible route must cross vehicular traffic lanes, marked crossings enhance pedestrian safety, particularly for people using wheelchairs and other mobility aids. Where possible, it is preferable that the accessible route not pass behind parked vehicles.

![Diagram of parking space access aisle](image)

**FIGURE A(1)-34 PARKING SPACE ACCESS AISLE**

SEE (R 502.3)

502.3.1 Width. Access aisles serving car and van parking spaces shall be 5 feet wide minimum.

502.3.2 Length. Access aisles shall extend the full length of the parking spaces they serve.

502.3.3 Marking. Access aisles shall be marked so as to discourage parking in them.

Advisory 502.3.3 Marking. The method and color of marking are not specified by these requirements but may be addressed by State or local laws or regulations. Because these requirements permit the van access aisle to be as wide as a parking space, it is important that the aisle be clearly marked.

* Rev. 10/20
For information on signing and marking Accessible Parking Spaces, see Traffic Engineering Division Memorandum IIM-TE-284.

502.3.4 Location. Access aisles shall not overlap the vehicular way. Access aisles shall be permitted to be placed on either side of the parking space except for angled van parking spaces which shall have access aisles located on the passenger side of the parking spaces.

Location (Advisory 502.3.4) Wheelchair lifts typically are installed on the passenger side of vans. Many drivers, especially those who operate vans, find it more difficult to back into parking spaces than to back out into comparatively unrestricted vehicular lanes. For this reason, where a van and car share an access aisle, consider locating the van space so that the access aisle is on the passenger side of the van space.

See Figures A(1)-35, A(1)-36, A(1)-37 and A(1)-38* that illustrate different combinations of Accessible Parking Spaces and Access Aisles that will accommodate cars, trucks and vans.

**FIGURE A(1)- 35 ACCESSIBLE PARKING SPACE WITH ACCESS AISLE FOR CARS AND TRUCKS**

**Note:** Wheel stops are required when parking spaces (accessible or otherwise) are located adjacent to sidewalk / pedestrian accessible route and shall be located a minimum of 2 feet from the face of curb, so that the parked vehicle does not encroach into and reduce the usable width of the sidewalk / pedestrian accessible route. See Figures A(1)-30 and A(1)-35 through A(1)-38*.

* Rev. 10/20
EXCEPTION: Van parking spaces shall be permitted to be 8 feet wide minimum where the access aisle is 8 feet wide minimum.

FIGURE A(1)- 36* VAN ACCESSIBLE PARKING WITH ACCESS AISLE (PREFERRED)

FIGURE A(1)- 37* VAN ACCESSIBLE PARKING WITH ACCESS AISLE (OPTIONAL)

* Rev. 10/20
502.4 Floor or Ground Surfaces

Parking spaces and access aisles serving them shall comply with 302. Access aisles shall be at the same level as the parking spaces they serve. Changes in level are not permitted.

**EXCEPTION:** Slopes not steeper than 1:48 shall be permitted.

**Advisory 502.4 Floor or Ground Surfaces.** Access aisles are required to be nearly level in all directions to provide a surface for wheelchair transfer to and from vehicles. The exception allows sufficient slope for drainage. Built-up curb ramps are not permitted to project into access aisles and parking spaces because they would create slopes greater than 1:48.

502.5 Vertical Clearance

Parking spaces for vans and access aisles and vehicular routes serving them shall provide a vertical clearance of 8 feet 2 inches minimum.

* Rev. 10/20
Advisory 502.5 Vertical Clearance. Signs provided at entrances to parking facilities informing drivers of clearances and the location of van accessible parking spaces can provide useful customer assistance.

502.6 Identification.

Parking space identification signs shall include the International Symbol of Accessibility (see below) complying with 703.7.2.1 and the MUTCD, Chapter 3. Signs identifying van parking spaces shall contain the designation "van accessible." Signs shall be 5 feet minimum above the finish floor or ground surface measured to the bottom of the sign. Such signs shall be located so they cannot be obscured by a vehicle parked in the space.

Accessible Parking Spaces shall be identified and designated as reserved by signs and markings displaying the International Symbol of Accessibility. Van accessible spaces shall have an additional sign "Van-Accessible" mounted below the International Symbol of Accessibility. Such signs shall be located so they cannot be obscured by a vehicle parked in the space.

For information on signing and marking Accessible Parking Space, see Traffic Engineering Memorandum IIM-TE-284.

For additional information, see ADA Compliance Brief: Restriping Parking Spaces

502.7 Relationship to Accessible Routes

Parking spaces and access aisles shall be designed so that cars and vans, when parked, cannot obstruct the required clear width of adjacent accessible routes.

Advisory 502.7 Relationship to Accessible Routes. Wheel stops are an effective way to prevent vehicle overhangs from reducing the clear width of accessible routes.

503 Passenger Loading Zones

503.1 General. Passenger loading zones shall comply with 503.

503.2 Vehicle Pull-Up Space.

Passenger loading zones shall provide a vehicular pull-up space 8 feet wide minimum and 20 feet long minimum.

* Rev. 7/18
503.3 Access Aisle.
Passenger loading zones shall provide access aisles complying with 503 adjacent to the vehicle pull-up space. Access aisles shall adjoin an accessible route and shall not overlap the vehicular way.

503.3.1 Width. Access aisles serving vehicle pull-up spaces shall be 5 feet wide minimum.

503.3.2 Length. Access aisles shall extend the full length of the vehicle pull-up spaces they serve.

503.3.3 Marking. Access aisles shall be marked so as to discourage parking in them.
For information on signing and marking Accessible Parking Space, see Traffic Engineering Memorandum IIM-TE-284.

---

**FIGURE A(1)- 39° PASSENGER LOADING ZONE ACCESS AISLE**

503.4 Floor and Ground Surfaces.
Vehicle pull-up spaces and access aisles serving them shall comply with 302. Access aisles shall be at the same level as the vehicle pull-up space they serve. Changes in level are not permitted.

**EXCEPTION:** Slopes not steeper than 1:48 shall be permitted.

503.5 Vertical Clearance.
Vehicle pull-up spaces, access aisles serving them, and a vehicular route from an entrance to the passenger loading zone and from the passenger loading zone to a vehicular exit shall provide a vertical clearance of 9.5 feet minimum.

* Rev. 10/20
REST AREAS

Design guides for safety rest areas are shown on Figure A(1)-42*. Rest areas along the roadways are functional and desirable elements on heavily traveled roads and on those carrying recreational traffic. They are a part of the complete highway development provided for the safety and convenience of the roadway users. The design and location of rest areas depends much on the character and volume of traffic, type of highway and adjacent land use and should consider the scenic quality of the area, accessibility and adaptability to development. Other essential considerations include an adequate source of water and a means to treat and/or properly dispose of sewage. Site plans should be developed by the use of a comprehensive site planning process that should include the location of ramps, parking areas, buildings, picnic areas, water supply, sewage treatment facilities and maintenance areas. The objective is to give maximum weight to the appropriateness of the site rather than adherence to constant distance or driving time between sites.

Principles of ramp terminal design apply generally at the points of access to or from these areas. The designer is to refer to Section C-8 in this Appendix for the design of ramp terminal and speed change lane design criteria. Figures A(1)-40 and A(1)-42 are to be used as guides for the selection of the parking space arrangement for cars and trucks. Parking spaces and access aisles shall be designed with surface slopes not to exceed 2% in all directions.

For information on the number of Accessible Parking Spaces required and Accessible Parking Space dimensions, see Park-and-Ride Lots in this Appendix.

For information on the dimensions of accessible parking spaces, see Park-and Ride Lots in this Appendix. Accessible parking spaces shall be identified by signs displaying the International Symbol of Accessibility. For information on parking space signing and marking, see Traffic Engineering Memorandum IIM-TE-284. Accessible parking spaces should be located where the street has the least crown and grade and close to key destinations.

Parked vehicle overhangs shall not reduce the clear width of an accessible route (overhang distance 2 feet), which shall be accomplished by the installation of wheel stops as shown in Figure A(1)-30*. Accessible parking spaces shall be designated as reserved by a sign showing the International Symbol of Accessibility. Van accessible spaces shall have an additional sign "Van-Accessible" mounted below the symbol of accessibility. Such signs shall be located so they cannot be obscured by a vehicle parked in the space. For information on parking space signing and markings, see Traffic Engineering Memorandum IIM-TE-284. Provide minimum vertical clearance of 9.5 feet at accessible passenger loading zones and along at least one vehicle access route to such areas from site entrance(s) and exit(s).

For additional information, see ADA Compliance Brief: Restriping Parking Spaces

* Rev. 10/20
FIGURE A(1)-40° PARKING SPACE DESIGN AND ARRANGEMENTS FOR PARKING LOTS / PARK & RIDE LOTS

<table>
<thead>
<tr>
<th></th>
<th>45° Parking</th>
<th>60° Parking</th>
<th>*90° Parking With Wheel Stops</th>
<th>90° Parking Without Wheel Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29 ft.</td>
<td>25 ft.</td>
<td>20 ft.</td>
<td>18 ft.</td>
</tr>
<tr>
<td>B</td>
<td>9 ft.</td>
<td>9 ft.</td>
<td>9 ft.</td>
<td>9 ft.</td>
</tr>
<tr>
<td>C</td>
<td>21 ft.</td>
<td>22 ft.</td>
<td>20 ft.</td>
<td>18 ft.</td>
</tr>
<tr>
<td>D</td>
<td>12 ft.</td>
<td>15 ft.</td>
<td>26 ft.</td>
<td>24 ft.</td>
</tr>
</tbody>
</table>

NOTES: All dimensions shown are minimums. Greater aisle widths may be desirable to accommodate:
- Winter weather conditions.
- High number of turning movements associated with short term parking.
- Through traffic.

* Wheel stops are required when parking spaces are located perpendicular to the sidewalk, See Note under Figure A(1)-2-3

Rev. 10/20
## Summary of Parking Space Arrangements

<table>
<thead>
<tr>
<th>Central Roadway</th>
<th>Type of Vehicle and Angle of Parking</th>
<th>Total Parking Area Width (feet)</th>
<th>Number of Vehicles per 120 linear feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way</td>
<td>Trucks-parallel</td>
<td>54</td>
<td>2 8</td>
</tr>
<tr>
<td>One-way</td>
<td>Trucks-parallel</td>
<td>56</td>
<td>2 9</td>
</tr>
<tr>
<td>Two-way</td>
<td>Trucks-parallel</td>
<td>64</td>
<td>2 123</td>
</tr>
<tr>
<td>One-way</td>
<td>Cars-45°</td>
<td>60</td>
<td>8 8</td>
</tr>
<tr>
<td>One-way</td>
<td>Cars-60°</td>
<td>64</td>
<td>9 9</td>
</tr>
<tr>
<td>Two-way</td>
<td>Cars-90°</td>
<td>70</td>
<td>12 12</td>
</tr>
<tr>
<td>One-way</td>
<td>Trucks-parallel</td>
<td>54</td>
<td>2 2</td>
</tr>
</tbody>
</table>

*FIGURE A(1)- 41* PARKING SPACE DESIGN AND ARRANGEMENT FOR REST AREAS

* Rev. 10/20
FIGURE A(1)- 42* EXAMPLES OF SITE LAYOUTS FOR REST AREAS

A. Denotes areas to be cleared, grubbed, graded, top soiled, and seeded.

B. Denotes areas NOT to be cleared and grubbed except for areas within roadway and parking area construction limits.

NOTE: See Figure A(1)-40 for Parking Space Design and Arrangement.


* Rev 10/20
NOTES

- Design types are to receive the approval of the Environmental Division.
- Individual radii; length of ramps; individual ramp configuration, etc. are to be designed to fit the individual site conditions.
- Design and dimensions shown are approximate only.
- Well and septic drainage field locations are to be recommended by the District Environmental Manager. Testing and approval of soil conditions are to be obtained by the Environmental Division through the appropriate County and State agencies. Additional right of way for drain field should be acquired if necessary.
- The proposed right of way limits should be discussed with the Environmental Division after preparation of the plan and grade lines in order that adequate area for required facilities will be obtained.
- A single line of fence in median is to be specified if opposite rest areas are accessible, or if medians can be readily crossed by pedestrians. This fence should extend between points a minimum of 200 feet beyond ramp noses. Fencing in outer separator may be required because of site requirements.
- Perimeter of rest area to be fenced unless otherwise recommended by the field party.
- A note similar to the following is to be shown on the rest area detail sheet of all grading and drainage plans:
- "No trees or shrub outside the limits of the rest area roadway construction are to be cut without the approval of the Regional Landscape Architect."
FIGURE A(1)- 43' PARKING SPACE DESIGN FOR ANGLE PARKING OF TRUCKS

LEGEND

A – Angle of Parking  
B – Entrance Roadway Width  
C – Exit Roadway Width  
D – Parking Width  
E – Total Width

<table>
<thead>
<tr>
<th>ANGLE OF PARKING (DEGREES)</th>
<th>ENTRANCE ROADWAY WIDTH (FEET)</th>
<th>EXIT ROADWAY WIDTH (FEET)</th>
<th>PARKING AREA WIDTH (FEET)</th>
<th>TOTAL WIDTH PARKING AREA (FEET)</th>
<th>NUMBER OF TRUCKS PARKED (PER ACRE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
<td>20</td>
<td>54</td>
<td>94</td>
<td>11</td>
</tr>
<tr>
<td>45</td>
<td>30</td>
<td>30</td>
<td>69</td>
<td>124</td>
<td>16</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>40</td>
<td>79</td>
<td>149</td>
<td>16</td>
</tr>
</tbody>
</table>

For additional information, see the most recent AASHTO’s *Guide for the Design of Park-and-Ride Facilities.*

* Rev. 10/20
SECTION 4 TRANSIT (BUS) FACILITIES DESIGN CRITERIA

GENERAL

In July 2014, AASHTO released the *Guide for Geometric Design of Transit Facilities on Highways and Streets*. This guide provides a single, comprehensive reference of current practices in the geometric design of transit facilities and streets and highways. The facilities covered include: local buses, express buses, and bus rapid transit operating in mixed traffic, bus lanes, and high-occupancy (HOV) lanes, and bus-only roads within street and freeway environments, and street cars and Light Rail Transit (LRT) running in mixed traffic and transit lanes, and within medians along arterial roadways.

In April 2016, NACTO released the *Transit Street Design Guide*, which highlights as the centerpiece of transformative street projects such a shared transit streets and transit boulevards. In August 2016, ITE released an ITE Application Supplement to the NACTO *Transit Street Design Guide* to provide insight on how the Guide fits with other accepted practices that currently exist within the industry, addresses key application issues including traffic signals, use of street space, analysis techniques/performance measures, and provides case studies.

BUS TURNOUT (BUS STOP) DESIGN: LOCATION, TYPE AND DIMENSIONS

**Turnout Locations (Far-Side, Near-Side and Mid-Block)**

The **Far-Side** of an intersection is the preferred location for turnouts (Bus Bay).

A **Far-Side** turnout is superior to the Mid-Block turnout because it reduces walking distances for bus transfers, encourages patrons to use intersection crosswalks, and reduces right of way acquisition.

**Near-Side** turnouts should be avoided because of conflicts with right turning vehicles, delays to transit service as buses attempt to re-enter the travel lane, and obstruction of pedestrian activity as well as traffic control devices. The exception would be where buses would use a right turn lane as a queue jump lane associated with a bus signal priority treatment at an intersection (where a Far-Side turnout is not possible).

**Mid-Block** turnout locations are the least preferred unless associated with key pedestrian access to a major transit-oriented activity center.

* Rev. 1/17
Types of Turnouts (Closed and Open)

**Closed** turnouts are typically located on the Far-Side at signalized intersections. The signal creates breaks in the flow of traffic to permit bus drivers to re-enter the travel lane. They are also provided a Mid-Block Bus Stops near major transit destinations with high passenger activity and longer-than-average stop time.

![Diagram of a closed bus turnout]

**FIGURE A(1)-44 BUS* TURNOUT ON FAR SIDE (CLOSED)**

**Open** turnouts are located on the Far-Side at signalized intersections at the beginning of a block and are open to upstream traffic. The bus driver can decelerate across the intersection and then move from the travel lane into the turnout. The signal creates breaks in the flow of traffic to permit bus drivers to re-enter the travel lane. This allows the bus to move efficiently into the turnout and to stop out of the flow of traffic. Major disadvantages include: (1) bus re-entry into the general traffic lane may be delayed by through traffic, and (2) passengers loading areas and pedestrian walking space may be compromised. Pedestrian walking distance to cross the intersection is increased because the intersection width is increased by the width of the bus turnout. The open bus turnout can create conflicts for right-turning vehicles from the cross street that use the bus turnout for acceleration.

* Rev. 10/20
Bus Turnout Dimensions

The bus stop boarding area shall be 50 feet (min.) for each standard bus and 70 feet (min.) for each articulated bus expected to be at the stop at the same time.

The bus boarding area lane width shall be 12 feet (min.), excluding the gutter pan.

**FIGURE A(1)-46** BUS TURNOUT ON NEAR SIDE


**FIGURE A(1)-46** BUS TURNOUT ON MID-BLOCK


* Rev. 10/20
Bus Turnout Dimensions:

The bus stop boarding area shall be 50 feet (min.) for each standard bus and 70 feet (min.) for each articulated bus expected to be at the stop at the same time.

The bus boarding area lane width shall be 12 feet (min.), excluding the gutter pan.

Sources:

1. AASHTO Green Book, Chapter 4, Section 4.19
2. AASHTO Guide for Geometric Design of Transit Facilities on Highways and Streets, Chapter 5
3. TCRP Project D-09 Task 7-4 Bus Pull-Outs, page 12
4. NACTO *Transit Street Design Guide*, Chapter 3

* Rev. 7/19
BUS (TRANSIT) STOPS, SHELTERS, BOARDING AND ALIGHTING AREAS

SIGNS AND BENCHES

This information is from the U.S. Access Board Proposed Guidelines for Pedestrian Facilities in the Public Right-of-Way (PROWAG) dated July 26, 2011, Chapters R2 and R3.

R213 Transit Stops and Transit Shelters. Where provided, transit stops and transit shelters shall comply with R308.

Advisory R213 Transit Stops and Transit Shelters. Transit stops in the public right-of-way typically serve fixed route bus systems, including bus rapid transit systems, and light rail transit systems. Signs that identify the routes served by the transit stop must comply with the technical requirements for visual characters on signs unless audible sign systems or other technologies are used to provide the information (see R211 and R410). The Federal Highway Administration (FHWA) has issued guidance on the obligations of state transportation departments, metropolitan planning organizations, and transit agencies to coordinate the planning and funding of accessibility improvements to transit systems and facilities. The guidance is available at FHWA’s website: http://www.fhwa.dot.gov/civilrights/memos/

R308 Transit Stops and Transit Shelters

R308.1 Transit Stops. Transit stops shall comply with R308.1.

Advisory R308.1 Transit Stops. Transit stops should be located so that there is a level and stable surface for boarding vehicles. Locating transit stops at signalized intersections increases the usability for pedestrian with disabilities. Where security bollards are installed at transit stops, they must not obstruct the clear space at boarding and alighting areas or reduce the required clear width at pedestrian access routes (see R210).

R308.1.1 Boarding and Alighting Areas. Boarding and alighting areas at sidewalk or street level transit stops shall comply with R308.1.1 and R308.1.3. Where transit stops serve vehicles with more than one car, boarding and alighting areas serving each car shall comply with R308.1.1 and R308.1.3.

Advisory R308.1.1 Boarding and Alighting Areas. Where a transit shelter is provided, the boarding and alighting area can be located either within (if shelter is open on all sides) or outside of the shelter.

R308.1.1.1 Dimensions. Boarding and alighting areas shall provide a clear length of 8 feet minimum, measured perpendicular to the curb or street or highway edge, and a clear width of 5 feet minimum, measured parallel to the street or highway.

* Rev. 1/17
R308.1.1.2 Grade. Parallel to the street or highway, the grade of boarding and alighting areas shall be the same as the street or highway, to the extent practicable. Perpendicular to the street or highway, the grade of boarding and alighting areas shall not be steeper than 2 percent.

R308.1.2 Boarding Platforms. Boarding platforms at transit stops shall comply with R308.1.2 and R308.1.3. Boarding platforms shall be at least 8 feet wide, measured perpendicular to the curb or street or highway edge and at least 25 feet long, and measured parallel to the street or highway. The boarding platform may need to be longer depending on the size, shape and orientation of the shelter and the number of waiting passengers, (See AASHTO Guide For Geometric Design of Transit Facilities on Highways and Streets, page 5-28, section 5.2.3.3).

R308.1.2.1 Platform and Vehicle Floor Coordination. Boarding platforms shall be positioned to coordinate with vehicles in accordance with the applicable requirements in 49 CFR parts 37 and 38.

Advisory R308.1.2.1 Platform and Vehicle Floor Coordination. The Department of Transportation regulations (49 CFR parts 37 and 38) require the height of the vehicle floor and the station platform to be coordinated so as to minimize the vertical and horizontal gaps.

R308.1.2.2 Slope. Boarding platforms shall not exceed a slope of 2 percent in any direction. Where boarding platforms serve vehicles operating on existing track or existing street or highway, the slope of the platform parallel to the track or the street or highway is permitted to be equal to the grade of the track or street or highway.

R308.1.3 Common Requirements. Boarding and alighting areas and boarding platforms shall comply with R308.1.3.

* Rev. 10/20
**R308.1.3.1 Surfaces.** The surfaces of boarding and alighting areas and boarding platforms shall be firm, stable and slip resistant and comply with R302.7.

**Advisory R308.1.3.1 Surfaces.** Detectable warning surfaces are required at boarding and alighting areas for rail vehicles and at boarding platforms for buses and rail vehicles (see R208).

**R308.1.3.2 Connection.** Boarding and alighting areas and boarding platforms shall be connected to streets, sidewalks, or pedestrian circulation paths by pedestrian access routes complying with R302.

**R308.2 Transit Shelters.** Transit shelters shall be connected by pedestrian access routes complying with R302 to boarding and alighting areas or boarding platforms complying with R308.1. Transit shelters shall provide a minimum clear space (2.5 feet by 4 feet) complying with R404 entirely within the shelter and not interfere with other persons using the seating. Where seating is provided within transit shelters, the clear space (2.5 feet minimum by 4 feet minimum) shall be located either at one end of a seat or shall not overlap the area (1.5 feet) from the front edge of the seat. Environmental controls within transit shelters shall be proximity-actuated. Protruding objects within transit shelters shall comply with R402.

**Advisory R308.2 Transit Shelters.** The clear space of 2.5 feet minimum by 4 feet minimum must be located entirely within the transit shelter and not interfere with other persons using the seating.

*Note: Bus (Transit) Shelters are considered an Occupiable Space / Building and require a Building Permit. See Chapter 2B of this Manual for more details.*

**R211.3 Transit Signs.** Signs that identify the routes served by transit stops shall comply with R410.

**Advisory R211.3 Transit Signs.** Transit schedules, timetables, and maps are not required to comply with R410.

**R212.6 Benches.** At least 50 percent, but no less than one, of benches at each location shall provide clear space (2.5 feet by 4 feet) complying with R404 adjacent to the bench. The clear space shall be located either at one end of the bench or shall not overlap the area within 1.5 feet from the front edge of the bench. Benches at tables are not required to comply.

**Advisory R212.6 Benches.** Benches that provide full back support and armrests to assist in sitting and standing are more usable by pedestrians with disabilities.

---

*Rev. 7/17*
FIGURE A(1)-48

ELEMENTS AND DIMENSIONS ASSOCIATED WITH BUS (TRANSIT) STOPS

8' Min. x 25' Min. Concrete Boarding Platform (Includes 1 - 8' x 5' Boarding and Alighting Area for each Door of the Bus)

Detectable Warning Surface Required For Entire Length of Boarding Platform

8' Min. x 14' Min. Concrete Bus Shelter Pad (Width and Length Varies)

6' Min. x 12' Min. Bus Shelter (Width and Length Varies)

5' Sidewalk

5' Sidewalk

Curb & Gutter

Bus

12' Min.

Edge of Travelway

* Rev. 10/20
FIGURE A(1)-49 9' OFF-ROAD SEPARATED BIKE LANE WITH SIDEWALK

* Rev. 10/20
**FIGURE A(1) - 50’ TYPICAL BUS (TRANSIT) SHELTER**

Notes:
1. Width and Length of Shelter Varies.
2. Concrete Pad is to be wider and longer than shelter dimensions.

---

* Rev. 10/20
TRANSPORTATION FACILITIES (RAIL PLATFORMS, STATION SIGNS)

This information is from the U.S. Access Board ADA Standards, Chapter 8, which can be accessed at:
https://www.access-board.gov/guidelines-and-standards/transportation/facilities/ada-standards-for-transportation-facilities

810 Transportation Facilities

Transportation Facilities shall comply with 810.

810.5 Rail Platforms. Rail platforms shall comply with 810.5.

810.5.1 Slope. Rail platforms shall not exceed a slope of 1:48 in all directions.

EXCEPTION: Where platforms serve vehicles operating on existing track or track laid in existing roadway, the slope of the platform parallel to the track shall be permitted to be equal to the slope (grade) of the roadway or existing track.

810.5.2 Detectable Warnings. Platform boarding edges not protected by platform screens or guards shall have detectable warnings complying with 705 along the full length of the public use area of the platform.

810.5.3 Platform and Vehicle Floor Coordination. Station platforms shall be positioned to coordinate with vehicles in accordance with the applicable requirements of 36 CFR part 1192. Low-level platforms shall be 8 inches minimum above top of rail. In light rail, commuter rail, and intercity rail systems where it is not operationally or structurally feasible to meet the horizontal gap or vertical difference requirements of part 1192 or 49 CFR part 38, mini-high platforms, car-borne or platform-mounted lifts, ramps or bridge plates or similarly manually deployed devices, meeting the requirements of 49 CFR part 38, shall suffice.

EXCEPTION: Where vehicles are boarded from sidewalks or street-level, low-level platforms shall be permitted to be less than 8 inches.

Advisory 810.5.3 Platform and Vehicle Floor Coordination. The height and position of a platform must be coordinated with the floor of the vehicles it serves to minimize the vertical and horizontal gaps, in accordance with the ADA Accessibility Guidelines for Transportation Vehicles (36 CFR Part 1192). The vehicle guidelines, divided by bus, van, light rail, rapid rail, commuter rail, intercity rail, are available at www.access-board.gov. The preferred alignment is a high platform, level with the vehicle floor. In some cases, the vehicle guidelines permit use of a low platform in conjunction with a lift or ramp. Most such low platforms must have a minimum height of eight inches above the top of the rail. Some vehicles are designed to be boarded from a street or the sidewalk along the street and the exception permits such boarding areas to be less than eight inches high.

* Rev. 7/18
810.6 Rail Station Signs. Rail station signs shall comply with 810.6.

EXCEPTION: Signs shall not be required to comply with 810.6.1 and 810.6.2 where audible signs are remotely transmitted to hand-held receivers, or are user or proximity-actuated.

Advisory 810.6 Rail Station Signs Exception. Emerging technologies such as an audible sign systems using infrared transmitters and receivers may provide greater accessibility in the transit environment than traditional Braille and raised letter signs. The transmitters are placed on or next to print signs and transmit their information to an infrared receiver that is held by a person. By scanning an area, the person will hear the sign. This means that signs can be placed well out of reach of Braille readers, even on parapet walls and on walls beyond barriers. Additionally, such signs can be used to provide wayfinding information that cannot be efficiently conveyed on Braille signs.

810.6.1 Entrances. Where signs identify a station or its entrance, at least one sign at each entrance shall comply with 703.2 and shall be placed in uniform locations to the maximum extent practicable. Where signs identify a station that has no defined entrance, at least one sign shall comply with 703.2 and shall be placed in a central location.

810.6.2 Routes and Destinations. Lists of stations, routes and destinations served by the station which are located on boarding areas, platforms, or mezzanines shall comply with 703.5. At least one tactile sign identifying the specific station and complying with 703.2 shall be provided on each platform or boarding area. Signs covered by this requirement shall, to the maximum extent practicable, be placed in uniform locations within the system.

EXCEPTION: Where sign space is limited, characters shall not be required to exceed 3 inches.

Advisory 810.6.2 Routes and Destinations. Route maps are not required to comply with the informational sign requirements in this document.

810.6.3 Station Names. Stations covered by this section shall have identification signs complying with 703.5. Signs shall be clearly visible and within the sight lines of standing and sitting passengers from within the vehicle on both sides when not obstructed by another vehicle.

Advisory 810.6.3 Station Names. It is also important to place signs at intervals in the station where passengers in the vehicle will be able to see a sign when the vehicle is either stopped at the station or about to come to a stop in the station. The number of signs necessary may be directly related to the size of the lettering displayed on the sign.

810.7 Public Address Systems. Where public address systems convey audible information to the public, the same or equivalent information shall be provided in a visual format.

* Rev. 1/17